Элементы Пельтье и их применение

Элемент Пельтье

Все вы знаете, что с помощью электрического тока можно нагревать какие-либо предметы. Это может быть паяльник, электрочайник, утюг, фен, различного рода обогревашки и тд. Но слышали ли вы, что с помощью электрического тока можно охлаждать? «Ну а как же, например, бытовой холодильник» — скажите вы. И будете не правы. В бытовом холодильнике электрический ток оказывает только вспомогательную функцию: гоняет фреон по кругу.

Что такое элемент Пельтье

Но существуют ли такие радиоэлементы, которые при подаче на них электрического тока вырабатывают холод? Оказывается существуют ;-). В 1834 году французский физик Жан Пельтье обнаружил поглощение тепла при прохождении электрического тока через контакт двух разнородных проводников. Или, иными словами, в этом месте наблюдалась пониженная температура. Ну и как положено в физике, чтобы не придумывать новое название этому эффекту, его называют в честь того, кто его открыл. Открыл что-то новое? Отвечай за базар)). С тех пор зовется такой эффект эффектом Пельтье.

Ну и как тоже ни странно, элемент, который вырабатывает холодок, называют элементом Пельтье. Элемент Пельтье — это термоэлектрический преобразователь , принцип действия которого основан на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. ThermoElectric Cooler — термоэлектрический охладитель).

Практический опыт с элементом Пельтье

Выглядеть он может по-разному, но основной его вид — это прямоугольная или квадратная площадка с двумя выводами. Сразу же отметил сторону «А» и сторону «Б» для дальнейших экспериментов

элемент пельтье

Элемент Пельтье

Почему я пометил стороны?

Вы думаете, если мы просто тупо подадим напряжение на этот элемент, он у нас будет полностью охлаждаться? Не хочу вас разочаровывать, но это не так… Еще раз внимательно читаем определение про элемент Пельтье. Видите там словосочетание «разности температур»? То то и оно. Значит, у нас какая-то сторона будет греться, а какая-то охлаждаться. Нет в нашем мире ничего идеального.

Для того, чтобы определить температуру каждой стороны элемента Пельтье, я буду использовать мультиметр, который шел в комплекте с термопарой

Элемент Пельтье

Сейчас он показывает комнатную температуру. Да, у меня тепло ;-).

Для того, чтобы определить, какая сторона элемента Пельтье греется, а какая охлаждается, для этого цепляем красный вывод на плюс, черный — на минус и подаем чуток напряжения, вольта два-три. Я узнал, что у меня сторона «А» охлаждается, а сторона «Б» греется, пощупав их рукой. Если перепутать полярность, ничего страшного не случится. Просто сторона А будет нагреваться, а сторона Б охлаждаться, то есть они поменяются ролями.

Пока ты тут, узнай что такое твердотельное реле ! Это бесплатно.

Итак, номинальное (нормальное) напряжение для работы элемента Пельтье — это 12 Вольт. Так как я подключил на красный — плюс, а на черный — минус, то у меня сторона Б греется. Давайте замеряем ее температуру. Подаем напряжение 12 Вольт и смотрим на показания мультиметра:

элемент пельтье

77 градусов по Цельсию — это не шутки. Эта сторона нагрелась так, что когда ее трогаешь, она обжигает пальцы.

Поэтому главной фишкой использования элемента Пельтье в своих электронных устройствах является большой радиатор. Желательно, чтобы радиатор обдувался вентилятором. Я пока что взял радиатор от усилителя, который дали в ремонт. Намазал термопасту КПТ-8 и прикрепил элемент Пельтье к радиатору.

Подаем 12 Вольт и замеряем температуру стороны А:

элемент пельтье

7 градусов по Цельсию). Когда трогаешь, пальцы замерзают.

Но также есть и обратный эффект, при котором можно вырабатывать электроэнергию с помощью элемента Пельтье, если одну сторону охлаждать, а другую нагревать. Очень показательный пример — это фонарик, работающий от тепла руки

Потребляемая мощность элемента Пельтье

Элемент Пельтье сам по себе считается очень энергозатратным. Регулировка температуры его сторон достигается напряжением. Чем больше напряжение, тем большую силу тока он потребляет. А чем больше силы тока он потребляет, тем быстрее набирает температуру. Поэтому, можно регулировать холодок, тупо меняя значение напряжения).

Вот некоторые значения по потреблению электрического тока элементом Пельтье:

Элемент Пельтье

При напряжении в 1 Вольт он кушает 0,3 Ампера. Неплохо)

Повышаю напряжение до 3 Вольт

Элемент Пельтье

Кушает уже почти 1 Ампер.

Повышаю до 5 Вольт

Элемент Пельтье

Чуть больше полтора Ампера.

Даю 12 Вольт, то есть его рабочее напряжение:

Элемент Пельтье

Жрет уже почти 4 Ампера! Грабеж).

Давайте грубо посчитаем его мощность. 4х12=48 Ватт. Это даже больше, чем 40 Ваттная лампочка, которая висит у вас в кладовке). Если элемент Пельтье такой прожорливый, целесообразно ли из него делать бытовые холодильники и холодильные камеры? Конечно же нет! Такой холодильник у вас будет жрать Киловатт 10 не меньше! Но зато есть один маленький плюс — он будет абсолютно бесшумен :-). Но если нет никакой возможности, то делают холодильники даже из элементов Пельтье. Это в основном мини холодильники для автомобилей. Также элемент Пельтье некоторые используют для охлаждения процессора на ПК. Получается очень эффективно, но по энергозатратам лучше все-таки ставить старый добрый вентилятор.

Где купить элемент Пельтье

На Али можно найти даже мини-кондиционер из элемента Пельтье вот по этой ссылке.

Элемент пельтье и его принцип работы

В электротехнике используется много разных физических эффектов, процессов и свойств материалов. Достаточно вспомнить магнетизм, емкостные характеристики диэлектриков, сопротивление металлов прохождению тока. Определенный интерес представляют конструкции, содержащие связки двух полупроводников p- и n- типа, физические состояния которых, — под действием электрического тока — меняются. Речь идет об элементах Пельтье, названых так по имени первооткрывателя эффекта.

Элемент Пельтье

При подаче электроэнергии в устройство названого типа, место соприкосновения пластин разной энергетической проводимости нагревается или охлаждается в зависимости от направления движения тока. Причем разница температур может быть весьма велика и зависит в большей степени только от поступающего напряжения. Доступность конструкции позволяет изготовить самодельный элемент Пельтье даже в домашних условиях силами заинтересованного любителя электроники из вполне доступных материалов.

Самодельный холодильник с использованием элемента Пельтье:

Самодельный холодильник с использованием элемента Пельтье

Ниши применения аппарата довольно широки, от создания разогревающих поверхностей, до систем охлаждения процессоров, напитков или даже создания мини-холодильников. Единственный минус элемента — стоимость исходных материалов. Для миниатюрных конструкций еще можно найти необходимое их количество в компонентах электроники. В случае больших и соответственно мощных аппаратов, цена полупроводников будет дороже.

Теперь что касается выработки тока на биметаллических пластинах. Физическое явление ошибочно относят конкретно к элементам Пельтье, что не совсем точно соответствует истине. Изначально эффект открыт был Т. И. Зеебеком от фамилии которого и получил свое название. В проведенных исследованиях было выявлено, что в двух связанных проводниках из различных металлов (не обязательно p- и n- типа), для которых создается разница температур в отношении каждого, методом нагрева одного и охлаждением другого, возникает электрический ток. Правда, КПД процесса выше у полупроводниковой конструкции, больше напоминающей классический элемент Пельтье.

Генератор на основе эффекта Зеебека:

Генератор на основе эффекта Зеебека

К сожалению, несмотря на видимые преимущества термических генераторов, производящих электричество и работающих на основе эффекта Зеебека, широкого распространения они не получили. Во всем виновата изначальная цена материалов, от которых непосредственно зависит коэффициент полезного действия на каждую единицу площади устройства. Кроме того, не стоит забывать о разнице температур, резкость которой в природе получить достаточно сложно. Есть конечно варианты, когда генератор названого типа работает на принудительном нагреве одной пластины и охлаждении другой. Причем первое действие производится не только за счет сгорания ископаемого топлива, но и к примеру, при распаде радиоактивных элементов или воздействия солнечных лучей. К сожалению, мощность таких устройств относительно мала по сравнению с энергозатратами, нужными для конечного производства тока. Классические виды генераторов в названом случае более эффективны при весьма солидной экономии топлива, необходимого для работы, или же при слабом действии природных факторов.

Еще один генератор, использующий тепло для питания слабого потребителя:

генератор, использующий тепло для питания слабого потребителя

Краткая история открытия и обоснование физики работы

В основе работы элемента Пельтье находится физический принцип прохождения тока через две соприкасающиеся пластины, изготовленные из материалов с различными уровнями энергии тока прохождения, или другими словами — полупроводниками отличающихся типов. В месте их соединения будет наблюдаться нагрев при подаче тока в одну сторону, и понижение температуры при движении его в обратную.

Открыт эффект был еще в 18 веке Жан-Шарлем Пельтье, который получил его случайно, соединив контакты из висмута и сурьмы от источника тока. Капля воды, находящаяся в точке соприкосновения, превратилась в лед, что и вызвало интерес исследователя. Практическое применение открытие не получило по причине слабой распространенности электротехники в указанный период времени. Вспомнили о нем уже позднее, в век развития микроэлектроники, компонентам которой нужно было миниатюрное охлаждение, желательно без жидкостей и подвижных частей (насосов, вентиляторов и прочих).

Продаваемые сборки элементов Пельтье:

Продаваемые сборки элементов Пельтье

Элемент Пельтье можно создать не только из полупроводников. Но, к сожалению, эффект от использования различных проводящих металлов будет ниже, и практически полностью потеряется за счёт нагревания их в месте соприкосновения и общей теплопроводности материала.

Внутреннее устройство элемента Пельтье:

Внутреннее устройство элемента Пельтье

В общем виде конструкция выглядит как набор электродов кубической формы, изготовленных из полупроводников n- и p-типа. Каждый из них соединен с противоположными проводящими контактами, а все указанные пары соединены между собой последовательно. Причем расположение элементов выполняется так, чтобы связующие металлы между сборками полупроводников одного типа, соприкасались с первой стороной устройства в общем, а второго с противоположной. Сами p- и n- кубы зачастую изготавливаются из теллурида висмута и сплава кремния с германием. Соединительные контакты обычно из меди, алюминия или железа. Здесь главное требование — хорошая теплопроводность. Количество же пар в одной конструкции не ограничивается, и чем их больше, тем эффективнее работает элемент Пельтье. При подаче напряжения на сборку одна ее сторона нагревается, вторая охлаждается.

Принципиальная схема соединений в элементе Пельтье:

Принципиальная схема соединений в элементе Пельтье

Годом нахождения обратного эффекта, выражающегося в выработке тока при охлаждении и нагреве соединенных проводников из разных металлов, принято считать 1821. Открытие было сделано Т. И. Зеебеком, который уже на следующий год опубликовал его в статье, предназначенной для Прусской академии наук, с названием «К вопросу о магнитной поляризации некоторых металлов и руд, возникающей в условиях разности температур».

Хотя согласно его работе, система генерации действует не только при использовании полупроводников, с ними ее КПД намного выше.

Элемент Пельтье, предназначенный целям генерации тока:

Элемент Пельтье, предназначенный целям генерации тока

Где применяется

Миниатюрность настоящих элементов и относительно низкое их энергопотребление, — вкупе с отсутствием движущихся частей или различных жидкостей, применяемых в целях переноса тепла — предоставляет широкий спектр ниш использования. Сюда входят автомобильные кондиционеры, системы охлаждения микросхем и элементов электроники, мини-холодильники, подставки поддерживающие определенную температуру размещенных сверху емкостей. Кроме названых используется оборудование на элементах Пельтье в специфичных сферах, на подобии ПЦР-амплификаторов, нагревающихся систем вспышки фотоаппаратов, телескопах (для снижения теплового шума) и приемниках излучения инфракрасных устройств.

Реже можно заметить настоящий элемент в роли части конструкции генераторов. Хотя на рынках периодически всплывают аппараты аналогичного класса, к примеру, в виде фонариков, работающих от тепла человеческого тела или слабых машин, производящих электрический ток в целях подзарядки аккумуляторов смартфонов или ноутбуков.

Напряжение, получаемое на выходе элементов Пельтье:

Напряжение, получаемое на выходе элементов Пельтье

Достоинства и недостатки

Как уже говорилось ранее, основным плюсом элементов Пельтье служит их миниатюрность, вкупе с отсутствием движущихся частей и агрегатных сред, используемых для передачи температуры. Соответственно, нет различных вентиляторов и насосов, хотя первые и могут использоваться для создания более быстрой конвекции тепла устройства и внешней среды. Кроме названых можно вспомнить простоту конструкции, которую в принципе может повторить каждый, изготовив элемент Пельтье своими руками.

Есть и минусы, основным из которых можно назвать низкий КПД, требующий повышения силы тока для создания действительно значимой разницы температур между горячей и холодной частью.

Эффект охлаждения достигаемый при использовании элементов Пельтье:

Эффект охлаждения достигаемый при использовании элементов Пельтье

Элементы Пельтье своими руками

Получив теоретические знания о функционировании биметаллического устройства, пора перейти к тому, как сделать элемент Пельтье своими руками. Вот только сначала нужно выбрать нишу его применения. Хотя бы потому, что использовать устройство можно для охлаждения чего-либо, нагрева, или в качестве генератора с целью выработки электроэнергии. Последний вариант предпочтительнее по причине ненужности большого количества исходных материалов, хотя бы потому что многовольтное и высокоамперное устройство изготовить в любом случае сложно, особенно дома, ну а для целей подзарядки чего-либо подойдет и меньший его вариант. Хотя лучше купить готовый элемент Пельтье требуемой мощности с торговых интернет-площадок, чем заниматься его изначальным и достаточно невыгодным изготовлением.

Элементы Пельтье своими руками

Из диодов и транзисторов

Фактически любой элемент Пельтье представляет собой гирлянду из последовательно соединенных диодов, работающих в режиме пробоя. В сущности, любой электронный компонент, пропускающий ток в одном направлении и препятствующий его прохождению в обратном, построен на принципах соединения полупроводников p-n типа. Что в свою очередь наводит на мысли о схожести системы на искомую конструкцию, аналогичную той, которую имеет модуль Пельтье. Если брать во внимание диоды с пластмассовой оболочкой (включая излучающие свет), мешает доступу к самим контактным пластинам из разных металлов только сам корпус устройства.

Вот они, две пластины полупроводника в прозрачном диоде:

две пластины полупроводника в прозрачном диоде

Случай транзисторов аналогичен, конечно учитывая то, что в большинстве из них три контакта, два из полупроводника одного типа и один (меньший) другого. Хотя избавиться от корпуса, если он металлический, проще, что довольно распространено у элементов названого типа — достаточно срезать верхнюю крышку и получить доступ к открытым контактным пластинам.

Металлический транзистор со снятой крышкой:

Металлический транзистор со снятой крышкой

Саму процедуру избавления от корпуса возложим на читателей, с рекомендацией попробовать нагрев, кислоту или механическое снятие преграды. Что касается соединения контактных площадок, здесь некоторые фанаты, судя по имеющейся информации, использовали меднение их верхушек электрическим методом. Впоследствии к подготовленным участкам осуществлялась пайка проводящих контактов.

Читайте также:  Стулья икеа: актуальные модели и правила использования в дизайне интерьера

После получения требуемых металлов, главное, что нужно помнить при их подключении — направление прохождения тока и последовательное соединение, выглядящее, как p-n-p-n-p-n, учитывая тип полупроводников. Кроме того, чем больше будет использовано элементов в конструкции, вне зависимости от их размера, тем и выше КПД получившегося генератора или устройства создающего тепло вместе с холодом.

В окончании

Статья полностью объясняет, как работает элемент Пельтье и можно ли его повторить своими руками, используя только доступные материалы. Целесообразность самоличной сборки в практических целях оставляем на совести интересующихся вопросом. Хотя устройство, сделанное лично, безусловно более полно удовлетворит внутреннего любителя все делать самостоятельно, в отличие от покупного.

Что можно сделать из элементов Пельтье?

Элементы Пельтье — казалось бы, давно уже не новость, однако многие не полностью представляют принцип их работы, и не знают, что можно сделать из модулей и зачем они нужны. Изобретатель Игорь Белецкий покажет несколько наглядных экспериментов, чтобы у вас сложилось понимание того, на что способны эти пластинки.

Их легко приобрести в интернете и заказать доставку по почте. Купить Пельтье лучше всего в этом китайском магазине. Есть и специальный кулер охлаждения.

На фото: Модуль Пельтье

Элемент Пельтье

Самый популярный модуль Пельтье TEC1-12706

Самым популярным среди практиков, увлеченных идеями свободной природной энергии и производителей технических устройств является элемент размером 40 на 40 миллиметров с маркировкой TEC1-12706. Это означает, что он состоит из 127 пар малюсеньких термоэлементов — полупроводников разного типа, которые попарно соединены при помощи медных перемычек в последовательную цепь и рассчитаны на постоянный ток до 5 А при напряжении 12 вольт.

Схема Элемента Пельтье

Схема Элемента Пельтье

Некоторые думают что модули Peltier, это что-то типа солнечных панелей — ведь они такие же плоские, торчат проводки, и те и другие могут генерировать электрический ток. Увы, это не совсем так на самом деле. Чтобы понять, как функционируют загадочные пластинки, посмотрите видео И. Белецкого, описание в текстовом формате ниже.

Эффекты Пельте и Зебека — функции модуля

У этого девайса есть целых два режима работы — 1. выработка холода и тепла; 2 — генерация электрического тока.

1. Итак, знаменитый эффект Пельтье (тепло и холод). Это когда вы подводите к элементу постоянный ток и замечаете, что одна из его сторон стала теплее, а другая холоднее. Таким образом он работает как тепловой насос. Очень полезное свойство. Спору нет.

2. Но оказалось, что имеет место и обратный процесс — так называемой эффект Зебека, а именно возникновение электрического тока при установлении и поддержании определенной разности температур на сторонах самого модуля (пластинки).

Примечание. Никогда не перегревайте элементы, если хотите и далее проводить эксперимент с ними. Полупроводники в модуле спаяны припоем, температура плавления которого может лежать в пределах от восьмидесяти до двухсот градусов. А учитывая, где сегодня производится большинство этих элементов, можно только догадываться на каких соплях их спаяли.

Схема. Как создается электричество при нагреве сторон Пельтье

peltie

Вся неприятность в том, что этот элемент будет нормально работать только при эффективном охлаждении.

Тест с получением электричества

Например, мы хотим проверить эффект Зебека. Поставим сверху кружку с кипятком. Тем самым не превышено 100 градусов, допустимых по нагреву.

Наблюдаем появление напряжения. Интересно, что если изменить направление тепловой потока через модуль, то изменится направление постоянного тока. Но со временем на второй стороне благодаря теплопроводности элемента Пельтье температура тоже поднимется и напряжение, естественно, упадет.

Чтобы эффект был постоянным, нужен постоянный отвод тепла. Для этого модуль размещают на массивным радиаторое и желательно с активным охлаждением. Показатели явно лучше, как вы понимаете. Это требует дополнительных энергозатрат.

Допустим, вы хотите сделать из этого элемента походную зарядку для мобильников. Тогда на природе радиатор можно поместить в холодную воду, возможно даже проточную или ледяную, что несомненно еще лучше. Применение этих модулей зимой при хорошем дармовом минусе — наиболее перспективно.

Правда, одного элемента для зарядки телефона явно будет маловато. А вот два — это уже лучше. Естественно, если увеличить нагрев, то выходная мощность тоже возрастет. Но это очень рискованный шаг, который можно сделать только ради эксперимента. Работа такого генератора будет длиться недолго.

Теперь перейдем к эффекту Пельтье, то есть к производству холода.

Холодильник на модулях Пельте — насколько он эффективен?

Для эксперимента будет использован автомобильный холодильник. Полезный объем его 20 литров. Обратите внимание — заявленная мощность — 48 ватт при токе 4 ампера и постоянном напряжении 12 вольт. А это значит, что внутри стоит всего лишь 1 маленький элемент Пельтье. Для тех кто не в теме откроем секрет — такую же мощность имеет обычный домашний холодильник, размеры которого в разы больше. Ну да ладно, сейчас не об этом. Проверим его эффективность. Например поставим ему минимальную задачу охладить стаканчик с водой, имеющей комнатную температуру 26 градусов. Для работы холодильника будем использовать блок питания, идеально подходящий по своим параметрам. Дополнительно в цепь будем помещен ваттметр. Он будет в реальном времени отображать ток, напряжение и мощность. Но самое главное — потребление, так называемый ватт в час. Таким образом мы сможем примерно оценить энергозатраты нашего холодильника.

Включаем и видим, все прекрасно работает. Вот ток 4,29 А. Напряжение 11,15 Вольт. Мощность 47,9 Ватт. 0,1 Ватт-часов.

Пока процесс идет, проведем более наглядный эксперимент, который покажет, что же именно происходит в холодильнике. Когда подадим на элемент постоянный ток, он начнет перекачивать тепло с одной стороны на другую.

холодильник на Пельтье делаем сами

Кстати, если поменять направление тока, то изменится и направление перекачки тепла, что весьма удобно. Главное не забываем об активном охлаждении, потому что пятьдесят ватт электрической мощности нагревает элемент мгновенно. Чем эффективнее мы отведем тепло с горячий стороны, чем холоднее на другой.

Как видите, на самой поверхности модуля вода замерзает очень быстро, ну еще бы — столько энергии сжирает.

Но вернемся к нашему холодильнику. Спустя один час работы температура воздуха внутри упала до пятнадцати градусов, а у воды опустилась до 20. Удивило, что за час работы он съел четко 48 ватт. Через два часа у воздуха было 13 градусов, а у воды 17. И наконец, после трех часов работы температура воздуха остановилась на 13-ти градусах, а в стакане с водой была 15 и ниже 12 она уже не опустится. Ну так себе холодильник, учитывая что он был забит напитками не полностью. Но при этом этот монстр потребил 140 Ватт. Для домашней сети может и не много, но для автомобильного аккумулятора это уже весьма ощутимо. Поэтому здесь и стоит всего лишь один элемент. Потому что больше никакой аккумулятор просто не потянет. А это значит, что кпд такого модуля ничтожно мал — буквально считанные проценты, что опять же зависит от производителя. Такой холодильник больше напоминает хороший термос. Если бы взяли из дома холодные продукты, то он бы просто не позволил им быстро нагреться. Делать такие холодильники большими энергетически невыгодно.

В каких случаях Пельтье эффективен?

Кстати это относится и к самодельщикам, пытающихся делать на этом принципе автомобильные кондиционеры. Есть более эффективные технологии, а вот использовать элементы Пельтье для охлаждения чего-то маленького и компактного — просто идеальное решение. Есть целый спектр таких устройств, например охлаждать процессоры или микросхемы различных малогабаритных приборов. В этом скорее всего и есть самый главный плюс таких элементов. Они миниатюрны и минимальны по весу. По сравнению с теми же фотоэлементами у Пельтье минусов конечно больше, ну а самый эффект безусловно заслуживает внимания. В конце концов все зависит от решаемых задач а если энергия халявная, то высокий КПД не так уж и важен.

До скольки градусов можно охладить элемент? Об этом в отдельном видео.

Заключение

Популярные среди радиолюбителей и инженеров модули Пельтье — электронные элементы, активно использующиеся для систем охлаждения и получения электроэнергии. На их основе разрабатываются источники питания для освещения или зарядки девайсов в походных условиях, мобильные компактные холодильники для автомобилей. Существуют попытки применения для охлаждения компьютерных процессоров. Работа устройств основана на 2 механизмах: при нагреве одной стороны пластины Пельтье и охлаждении второй, вырабатывается электроток; при подаче электричества на контакты одна сторона пластины охлаждается, вторая — нагревается.

6 комментариев

А как змеевик у дистилляционного аппарата им охладить? Надоедает возня с водяными трубками, да и летом вода не слишком холодная в водопроводе? Как приспособить? Змеевик — либо это трубка из нержавейки свернутая пружиной, либо эта же трубка запаянная в кожух проводящий воду. Как исхитриться? Может змеевик в виде пружины залить в олово в прямоугольной формочке и наклеить на него элемент, а остальную поверхность теплоизолировать?

Святослав! Идея интересная, но мощность одного элемента Пельтье для охлаждения горячей воды, вызывает сомнения в его эффективности. Видимо, нужно применить батарею элементов.

Элементы Пельтье. Работа и применение. Обратный эффект

Элементы Пельтье называются специальные термоэлектрические преобразователи, работающие по принципу Пельтье. (образования разности температур при подключении электрического тока, другими словами, термоэлектрический охладитель).

Что такое элемент Пельтье

Ни для кого не секрет, что электронные устройства при работе греются. Нагрев отрицательно влияет на процесс работы, поэтому, чтобы как-то охладить приборы, в корпус устройств встраивают специальные элементы, называющиеся по имени изобретателя из Франции – Пельтье. Это малогабаритный элемент, который может охлаждать радиодетали на платах устройств. При его установке собственными силами никаких проблем не возникнет, монтаж в схему производится обычным паяльником.

Elementy Pelte ustroistvo

1 — Изолятор керамический
2 — Проводник n — типа
3 — Проводник p — типа
4 — Проводник медный

В ранние времена вопросы охлаждения никого не интересовали, поэтому это изобретение осталось без применения. Два века спустя, при использовании электронных устройств в быту и промышленности, стали применять миниатюрные элементы Пельтье, вспомнив об эффекте французского изобретателя.

Принцип действия

Чтобы понять, как работает элемент на основе изобретения Пельтье, необходимо разобраться в физических процессах. Эффект заключается в соединении двух материалов с токопроводящими свойствами, обладающими различной энергией электронов в районе проводимости. При подключении электрического тока к зоне связи, электроны получают высокую энергию, для перехода в зону с более высокой проводимости второго полупроводника. Во время поглощения энергии проводники охлаждаются. При течении тока в обратную сторону происходит обычный эффект нагревания контакта.

Вся работа осуществляется на уровне решетки атома материала. Чтобы лучше понять работу, представим газ из частиц – фононов. Температура газа имеет зависимость от параметров:
  • Свойства металла.
  • Температуры среды.

Предполагаем, что металл состоит из смеси электронного и фононного газа, находящегося в термодинамическом равновесии. Во время касания двух металлов с различной температурой, холодный электронный газ перемещается в теплый металл. Создается разность потенциалов.

Elementy Pelte printsip deistviia

На стыке контакта электроны поглощают энергию фононов и отдают ее на другой металл фононам. При смене полюсов источника тока, весь процесс будет обратного действия. Разность температур будет возрастать до того момента, пока имеются в наличии свободные электроны с большим потенциалом. При их отсутствии наступит уравновешивание температур в металлах.

Если на одну сторону пластины Пельтье установить качественный теплоотвод в виде радиатора, то вторая сторона пластины создаст более низкую температуру. Она будет ниже на несколько десятков градусов, чем окружающий воздух. Чем больше значение тока, тем сильнее будет охлаждение. При обратной полярности тока холодная и теплая сторона поменяются друг с другом.

При соединении элемента Пельтье с металлом, эффект становится незначительным, поэтому практически устанавливают два элемента. Их количество может быть любым, это зависит от потребности в мощности охлаждения.

Эффективность действия эффекта Пельтье зависит от того, насколько точно выбраны свойства металлов, силы тока, протекающей по прибору, скорости отвода тепла.

Сфера использования

Чтобы применить практически элемент Пельтье, ученые произвели несколько опытов, показавших, что повышение отвода тепла достигается увеличением числа соединений 2-х материалов. Чем больше число спаев материалов, тем выше эффект. Чаще в нашей жизни такой элемент служит для охлаждения электронных устройств, уменьшения температуры в микросхемах.

Вот их некоторые области использования:
  • Устройства ночного видения.
  • Цифровые камеры, приборы связи, микросхемы, нуждающиеся в качественном охлаждении, для лучшего эффекта картинки.
  • Телескопы с охлаждением.
  • Кондиционеры.
  • Точные часовые системы охлаждения кварцевых электрических генераторов.
  • Холодильники.
  • Кулеры для воды.
  • Автомобильные холодильники.
  • Видеокарты.

Элементы Пельтье часто используются в системах охлаждения, кондиционирования. Есть возможность достижения довольно низких температур, что открывает возможность применения для охлаждения оборудования с повышенным нагревом.

В настоящее время специалисты используют элементы Пельтье в акустических системах, выполняющих роль кулера. Элементы Пельтье не создают никаких звуков, поэтому бесшумность является одним из их достоинств. Такая технология стала популярной из-за мощной отдачи тепла. Элементы, изготовленные по современной технологии, имеют компактные размеры, радиаторы охлаждения поддерживают определенную температуру долгое время.

Достоинством элементов является длительный срок службы, потому что они сделаны в виде монолитного корпуса, неисправности маловероятны. Простая конструкция обычного широко применяемого вида простая, состоит из двух медных проводов с клеммами и проводами, изоляции из керамики.

Это небольшой перечень мест применения. Он расширяется за счет устройств бытового назначения, компьютеров, автомобилей. Можно отметить использование элементов Пельтье в охлаждении микропроцессоров с высокой производительностью. Ранее в них устанавливались только вентиляторы. Теперь, при монтаже модуля с элементами Пельтье значительно снизился шум в работе устройств.

Читайте также:  Установка охранной сигнализации квартиры. Охранные системы для вашей квартиры – экспертное мнение

Будут ли меняться схемы охлаждения в обычных холодильниках на схемы с использованием эффекта Пельтье? Сегодня вряд ли это возможно, так как элементы имеют низкий КПД. Стоимость их также не позволит применить их в холодильниках, так как она достаточно высока. Будущее покажет, насколько будет развиваться это направление. Сегодня проводятся эксперименты с твердотельными растворами, аналогичными по строению и свойствам. При их использовании цена модуля охлаждения может уменьшиться.

Обратный эффект элементов Пельтье

Технология подобного вида имеет особенность с интересными фактами. Это заключается в эффекте образования электрического тока путем охлаждения и нагревания пластины модуля Пельтье. Другими словами, он служит генератором электрической энергии, при обратном эффекте.

Такие генераторы электричества существуют пока чисто теоретически, но можно надеяться на будущее развитие этого направления. В свое время французский изобретатель не нашел применения своему открытию.

Сегодня этот термоэлектрический эффект широко используется в электронике. Границы применения постоянно расширяются, что подтверждается докладами и опытами исследователей и ученых. В будущем бытовая и электронная техника станет обладать совершенными инновационными возможностями. Холодильники станут бесшумными, так же, как и компьютеры. А пока модули Пельтье монтируют в разные схемы для охлаждения радиодеталей.

Преимущества и недостатки
Достоинствами элементов Пельтье можно назвать следующие факты:
  • Компактный корпус элементов, позволяет монтировать его на плату с радиодеталями.
  • Нет движущихся и трущихся частей, что повышает его срок службы.
  • Позволяет соединение множества элементов в один каскад, по схеме, позволяющей уменьшать температуру очень горячих деталей.
  • При смене полярности питающего напряжения элемент станет работать в обратном порядке, то есть, стороны охлаждения и нагрева поменяются местами.
Недостатками можно назвать такие моменты:
  • Недостаточный коэффициент действия, влияющий на увеличение подводимого тока, для достижения необходимого перепада температур.
  • Довольно сложная система отведения тепла от поверхности охлаждения.
Как изготовить элементы Пельтье для холодильника

Изготовить такие элементы Пельтье можно самому быстро и просто. Для начала нужно определиться с материалом пластин. Нужно взять пластины элементов из прочной керамики, приготовить проводники в количестве больше 20 штук, для того, чтобы обеспечить наибольший перепад температур. При достаточном числе элементов КПД произойдет значительное увеличение производительности холодильника.

Большую роль играет мощность применяемого холодильника. Если он действует на жидком фреоне, то с производительностью проблем не возникнет. Пластины элементов монтируются возле испарителя, смонтированного вместе с двигателем. Для такого монтажа понадобится некоторый набор прокладок и инструмента. Таким образом, обеспечится быстрое охлаждение нижней части холодильника.

Необходима тщательная изоляция проводников, только после этого их подключают к компрессору. После окончания монтажа нужно проверить напряжение мультиметром. При нарушении работы элементов (например, короткое замыкание), сработает терморегулятор.

Другие применения термоэлектрических модулей

Эффект модуля Пельтье применяется сегодня, благодаря законам физики. Избыточная энергия элементов всегда пригодится там, где необходима бесшумный и быстрый обмен теплом.

Основные места использования модулей:
  • Охлаждение микропроцессоров.
  • Двигатели внутреннего сгорания выпускают отработанные газы, которые ученые стали применять для образования вспомогательной энергии с помощью термоэлектрических модулей. Полученная таким способом энергия подается снова в мотор, в виде электричества. Это создает экономию топлива.
  • В бытовых устройствах, действующих на нагревание или охлаждение.

Охлаждающий кулер может превратиться в нагреватель, а холодильник может выполнять функцию теплового шкафа, если изменить полярность постоянного тока. Это называется обратимым эффектом.

Такой принцип применяют в рекуператорах. Он состоит из бокса из двух камер. Они между собой сообщаются вентилятором. Элементы Пельтье нагревают холодный воздух, поступающий снаружи, с помощью энергии, которая извлечена из теплого воздуха в помещении. Такое устройство экономит расходы на отопление помещений.

Разновидности популярных модулей Пельтье

На площадках современных интернет-магазинов можно встретить самые разные термоэлектрические модули Пельтье. Отличаются они друг от друга температурными характеристиками, электрическими параметрами, размером, а также количеством термопар, установленных внутри модуля. Данные модули применяются как в портативных холодильниках и кондиционерах, так и в любительских поделках.

Стоит отметить, что модули Пельтье бывают однослойными и многослойными, так что вопрос монтажа решается достаточно свободно. В рамках данной статьи мы рассмотрим несколько видов наиболее распространенных термоэлектрических модулей Пельтье, разберемся в их устройстве и сравним параметры.

Разновидности популярных модулей Пельтье

Здесь изображен типичный однослойный термоэлектрический модуль Пельтье. Две керамические пластины (из оксида алюминия) толщиной менее 1 мм установлены в верхней и в нижней части модуля. Они, подобно печатной плате, служат опорой для внутренних термопар и каркасом для всего модуля.

Керамические пластины обладают высокой теплопроводностью, отличаются прочностью и огнестойкостью. К данным пластинам приклеены медные подложки, к которым припаяны полупроводниковые термопары, соединенные последовательно.

Однослойный модуль TEC1-12705

Пайка полупроводниковых термопар, при промышленном производстве модулей Пельтье, осуществляется легкоплавким припоем на специальном оборудовании при температуре в районе 145 ºC, так как полупроводниковые элементы не допускают перегрева. В результате модули получаются неразборными, а по краям обычно наносится силиконовый герметик.

Если любопытства ради все же разобрать такой модуль, то можно четко разглядеть кубики разнородных полупроводников (n-типа и p-типа), припаянные к медным подложкам, и соединенные друг с другом в последовательную цепь змейкой. Легко заметить, что сначала на медные подложки был нанесен легкоплавкий припой, а затем установлены составные части термопар.

Модуль Пельте в разобранном виде

В таком исполнении как на приведенном фото, получается 127 p-n- и 127 n-p-переходов, причем все n-p-переходы (для направления тока от плюса к минусу) расположены с одной стороны модуля, а все p-n-переходы — с другой его стороны.

На тех медных шинках где ток идет в направлении n-p-перехода, теплота поглощается (происходит интенсивное охлаждение данной стороны модуля), а там где ток идет в направлении p-n-перехода — эта же (теоретически) теплота выделяется. Таким образом модуль Пельтье переносит тепло с одной керамической пластины — на противоположную.

Элементы Пельтье

Наиболее популярный однослойный модуль TEC1-12705, стоимостью порядка $2, пользуется особым спросом на алиэкспресс. Габаритные размеры модуля 40 на 40 мм, толщина 3,8 мм. 127 соединенных последовательно термопар дают при температуре окружающей среды в 25ºC внутреннее сопротивление модуля от 2,5 до 2,8 Ом.

Рабочий ток устройства составляет от 4,3 до 4,6 А при питании номинальным напряжением 12 вольт. Максимально же допустимое напряжение составляет 15,4 вольта при критическом токе в 5,8 А. Предельно достижимая разница температур составляет 65 ºC, а максимальная холодильная мощность 42 Вт. Диапазон рабочих температур модуля — от -55 до 83 ºC.

Термоэлектрический модуль TEC2-25408

А вот и двухслойный модуль TEC2-25408, состоящий по сути из двух модулей TEC1-12704, соединенных параллельно, но имеющий размеры 40 на 40 мм и толщину 8 мм. Такой двухслойный охладитель способен дать до 70 Вт холодильной мощности при потреблении 96 Вт электрической мощности.

Его внутреннее сопротивление в выключенном состоянии равно примерно 1,5 Ом. Предельно достижимая разница температур в рабочем режиме составляет 65 ºC. Очевидно, при одной и той же предельной разнице температур с модулем TEC1-12705, двухслойный модуль TEC2-25408 будет охлаждать (перекачивать тепло) в полтора раза быстрее.

Четырехслойный модуль TEC4-24603

Далее представлен четырехслойный модуль TEC4-24603 толщиной 13,6 мм и шириной 40 мм, рассчитанный на напряжение 14,6 вольт и номинальный ток в 3 А. При потребляемой электрической мощности в 44 Вт, данный модуль способен обеспечить холодильную мощность 6,8 Вт и разницу температур до 107 ºC.

Термоэлемент Пельтье TEC4-24603

Составные элементы включены здесь последовательно. Как и любой модуль Пельтье, данная четырехслойная модель не допускает применения без радиатора более секунды.

Шестислойный модуль Пельтье TEC6-60506

Наконец, шестислойный модуль Пельтье TEC6-60506, рассчитанный на номинальное напряжение 30 вольт и ток 6 А. При ширине в 62 мм и толщиной 23 мм, данный модуль электрической мощностью 180 Вт способен обеспечить разницу температур до 100 °C с холодильной мощностью в 10 Вт. Модуль такого типа применим в установках, предназначенных для глубокой заморозки.

Элемент Пельтье

В настоящий момент сложно найти человека, не пользующегося теми или иными видами холодильного оборудования, будь то стационарный холодильник, имеющийся на кухне практически у каждого или же переносной вариант сумки, в которой можно безбоязненно хранить и переносить продукты без опасения их порчи. И хотя обычный холодильник и сумка, сохраняющая холод, выполняют одни и те же функции, их устройство имеет принципиальные отличия.

Обычные стационарные холодильники, широко распространенные как в квартирах, так и частных домах, имеют охлаждающую систему на основе циркуляции хладагента от испарителя к конденсатору и обратно и оснащены одним или двумя компрессорами. В отличие от стандартной конструкции, работа сумки-холодильника основывается на совершенно иных принципах, в них отсутствуют как основные элементы, так и фреон, обеспечивающий отбор тепла. В сумках-холодильниках процесс охлаждения базируется на принципе работы элемента Пельтье, который и обеспечивает требуемое охлаждение. Данный элемент возможно собрать своими руками, для чего следует более подробно остановиться на принципе его работы и основных характеристиках.

Что такое принцип Пельтье

Данный принцип был открыт почти 200 лет назад французом Жаном Пельтье, который обнаружил, что при протекании I по разнородным проводам происходит процесс выделения тепла, а при смене полярности – охлаждения, при этом наибольшее проявление подобного эффекта наблюдалось у полупроводниковых материалов. Причем тогда же была замечена обратимость процесса, при которой при возможности поддержании разных температур на проводах в месте контакта, в них фиксировалось появление электрического тока. Данный эффект также был очень важен и получил название эффекта Зеебека.

Чтобы попытаться объяснить данный эффект с точки зрения физики процесса, необходимо обратиться к классической теории электротехники и движению электротока в зависимости от разности потенциалов. При прикосновении двух разнородных проводов неизбежно возникает разность потенциалов U, создающая определенное поле. Таким образом, если по проводу пропустить I, то созданное разностью U поле будет или способствовать протеканию тока, или являться препятствием к этому.

Если полярность поля и тока противоположны, то необходимо найти дополнительную энергию, способствующую протеканию I, за счет чего контакт будет греться. Если поле и I однонаправлены, то ток поддерживается самим полем. Для этого требуется энергия, забираемая у вещества, что и вызывает охлаждение контакта. Таким образом, то количество тепла, которое выделяется или забирается при прохождении I, будет прямо пропорционально величине заряда, проходящего через место соединения проводников и рассчитывается как произведение I на время его прохождения.

Данное произведение называется коэффициентом Пельтье, величина которого зависит от материала и температур проводников, соприкасающихся между собой.

Если ранее эффект Пельтье не нашел себе широкого применения за неимением необходимых материалов, то на сегодняшний день, с учетом развития новых технологий, найдены типы проводников, которые способны обеспечить максимальный термоэлектрический эффект.

Устройство и принцип работы элемента Пельтье

Для того, чтобы получить максимальный эффект понижения температуры, применяется соединение термоэлементов в виде каскадов. Благодаря подобному устройству, на выходе стало возможным получить максимально низкую температуру и значительно увеличить саму эффективность охлаждения.

Для того, чтобы повысить холодопроводность не прибегая к значительному увеличению I, все элементы Пельтье соединяются последовательно в устройство, получившее название батареи.

Таким образом, нынешний модуль состоит из двух пластин, выполненных из керамики и играющих роль изоляторов, между которыми расположены термопары, соединенные последовательным образом.

При этом, расположение элементов в подобной батарее осуществляется следующим образом:

  • Нижняя, горячая сторона.
  • Верхняя, холодная сторона.
  • Полупроводники, функционирующие на основе n-перехода.
  • Полупроводники, функционирующие на основе p-перехода.
  • Проводники из меди.
  • Клеммы (контакты), служащие для присоединения к ИП (источнику питания).

Здесь p-n переходом (positive-negative) принято считать электронно-дырочный переход в месте соединения полупроводников n (носители зарядов – электроны) и p типа (дырки с положительным зарядом, возникающие в процессе отрыва электрона от атома).

При p-n возникает переход от одного вида проводимости к другому.

В зависимости от расположения, каждая из сторон (горячая или холодная) имеет контакт только с переходом p-n либо n-p. При этом осуществляются следующие функции:

  • p-n – нагрев.
  • n-p – охлаждение.

Благодаря переносу Q с одной стороны батареи на другую, между ними возникает дельта температур (DT). Как уже было сказано выше, если изменить полярность, то горячая и холодная поверхности просто поменяются местами.

На данном рисунке холодная сторона батареи обозначена как B (синим цветом), горячая – как А (красным цветом соответственно).

Технические характеристики элементов Пельтье

Всем термоэлектрическим модулям с элементом Пельтье присущи следующие характеристики:

  • Qmax (холодопроизводительность) – представляет собой максимально допустимый I и разницу T двух сторон батареи. Единица измерения – Ватты. Принято считать, что количество тепловой Q, поступающей на холодную стороны, передается на горячую мгновенно, с нулевыми потерями.
  • DTmax – максимум перепада температур между пластинами, измеряется в градусах. При этом, данный параметр учитывается при идеальных условиях работы: горячая сторона – 27C, холодная – отдача тепла равна нулю.
  • Imax – максимальный I, необходимый для обеспечения DTmax, измеряется в Амперах.
  • Umax – величина напряжения, которая будет иметь место при Imax и DTmax (измеряется в Вольтах).
  • Resistance – внутреннее R модуля по постоянному току DC, измеряется в Омах.
  • COP (Сoefficient Of Рerformance) – коэффициент, представляющий собой отношение Q охлаждения к Q, которое потребляет весь элемент и представляет собой не что иное, как КПД, при этом его величина колеблется от 0,3 до 0,5.

Каким образом маркируются элементы Пельтье

При маркировке подобных термоэлементов всегда используют стандартные обозначения, а именно:

  • Две первые буквы означают непосредственно тип элемента, а именно – ТЕ – термоэлемент.
  • Третья буква относится к размеру модуля и может быть выполнена в двух вариантах:
    • С – classic, стандартный размер термоэлемента.
    • S – small, маленький размер.

    Иногда в маркировку после всех цифр добавляется значение, относящееся к размерам модуля.

    Пример маркировки: ТЕС1-12706-40 (40х40 мм).

    Области применения элементов Пельтье

    Хотя все подобные батареи, основанные на элементах Пельтье, имеют COP, равный 0,3-0,5, что фактически соответствует его КПД, они активно применяются в измерительных системах, разного рода вычислительной технике, а также как элемент многих бытовых приборов, а именно:

    • Как составляющие холодильных устройств (мобильных автохолодильниках).
    • В вычислительной технике, в видеокартах.
    • В бытовых кулерах для воды.
    • Как генератор электроэнергии, при этом одна из сторон элемента должна принудительно нагреваться.
    • Во всех видах цифровых устройств, где крайне важно качественное охлаждение (видеокамеры, микросхемы, приборы для осуществления связи).
    • В системах кондиционирования.
    • Для телескопической техники, которой необходимо охлаждение.
    • Как составляющий элемент приборов ночного видения.

    Некоторые примеры применения модулей на элементах Пельтье будут рассмотрены ниже.

    Мобильные холодильные установки, автохолодильники на элементах Пельтье

    Несмотря на то, что степень охлаждения, реализуемая с помощью элементов Пельтье, сильно уступает холодильникам компрессорного и абсорбционного типа, они активно применяются в качестве мобильных установок охлаждения, так как имеют следующие преимущества:

    • Простота конструктивного исполнения.
    • Нечувствительность к различному роду вибраций.
    • Наличие только статических деталей (исключение составляет система вентиляции, обеспечивающая охлаждение радиатора).
    • Бесшумность работы.
    • Компактность всего холодильника.
    • Отсутствие необходимости выравнивания всего устройства относительно одной, определенной поверхности.
    • Длительность эксплуатации без потери всех своих основных качеств.
    • Экономичность энергопотребления.

    Учитывая все вышесказанное, холодильники на элементам Пельтье идеально подходят как мобильные устройства.

    Использование элемента Пельтье в качестве генератора

    Как уже указывалось выше, термоэлектрические батареи могут быть использованы как генераторы электроэнергии при условии, что температуру одной из сторон необходимо повышать.

    Согласно эффекту Зеебека, при увеличении DT сторон модуля, будет также увеличиваться протекаемый I. Однако, максимально повышать DTmax не представляется возможным, так как слишком высокий уровень температур приведет к расплавлению припоя, что послужит причиной поломки всего устройства (стандартная максимальная температура нагрева обычных термоэлектрических модулей не превышает 150C).

    Данную проблему частично можно решить при помощи тугоплавких припоев, которые допускают Т нагрева до 300C. С учетом низкого COP, подобные конструкции применимы лишь в тех случаях, когда использование более эффективных генераторов не представляется возможным, а именно как и в случае с холодильником, для мобильных устройств.

    Подобные термогенераторы с мощностью от 25 до 10 Вт прекрасно подойдут жителям отдаленных мест, в длительных походах или при проведении геологоразведочных работ.

    Более мощные генераторы уже используют в качестве стационарных устройств и применяют для запитки ГРУ, приборов метеостанций и подобных установок.

    Термоэлектрические модули, используемые в вычислительной технике

    В последнее время термоэлектрические модули стали активно применяться для охлаждения центрального процессора CPU в персональных компьютерах.

    Однако, рентабельность подобного применения батарей на элементах Пельтье достаточно мала по следующим причинам:

    1. Так как за счет небольшого значения коэффициента COP для эффективного охлаждения требуется запитывать устройство от достаточно мощного блока питания, это экономически невыгодно.
    2. Процессор в компьютере греется именно в тех случаях, когда ему приходится обрабатывать большой объем информации, в случаях, когда запущены или работают одновременно несколько программ. В ситуациях, когда компьютер просто включен или, к примеру, экран находится в спящем режиме, термоэлектрический модуль способен понизить температуру процессора до точки росы, при которой в любом случае начнется выпадение конденсата. А любая повышенная влажность, как известно, крайне губительна для электроники.

    Однако, при использовании гибридных систем охлаждения, при которых термоэлектрические модули работают совместно с другими видами, используемыми для понижения температуры, применение батарей на элементах Пельтье считается оправданным.

    Системы кондиционирования на термоэлектрических модулях

    Согласно принципу действия, охлаждение при помощи термомодулей на элементах Пельтье вполне способно заменить мобильные системы климат-контроля в автомобилях. Однако, принимая во внимание низкий коэффициент COP, для понижения температуры в салоне автомобиля потребуется значительно большее количество электроэнергии, что экономически не рентабельно.

    С учетом того, что подобная автомобильная система климат-контроля будет запитываться от установленного в машине генератора, его мощности будет явно недостаточно, потребуется установка другого, более мощного агрегата. Однако с заменой штатного генератора на более мощный значительно вырастет расход бензина, что вряд ли устроит любого автомобилиста.

    Таким образом, применение охладителя на основе элементов Пельтье для систем кондиционирования в настоящее время не нашло должного применения.

    Применение элементов Пельтье в кулерах

    Во многих моделях современных кулеров, устанавливаемых в различных помещениях, охлаждение воды происходит посредством термоэлектрического модуля.

    При этом, конструкция всего устройства оказывается значительно проще и надежнее устройств компрессорного типа, и включает в себя следующие элементы:

    • Непосредственно модуль охлаждения на термоэлектрических элементах.
    • Управляющий контроллер.
    • Термостат.
    • Нагревательный элемент.

    Несмотря на то, что подобная схема выполнения диспенсеров для воды применяется повсеместно, она также имеет свои недостатки:

    • Минимальная температура холодной воды составляет всего лишь 10-12°C.
    • Длительное время понижения температуры до требуемых величин.
    • Данный вид кулера реагирует на температуру окружающей среды, при этом при повышенной Т в помещении он не сможет охладить воду до требуемого уровня.
    • С учетом того, что в конструкции модуля присутствует вентилятор, его нельзя устанавливать в промышленных цехах с высоким уровнем пыли, так как это приведет к поломке последнего.

    Термоэлектрические модули Пельтье в осушителях воздуха

    Если в кондиционерах применение охлаждающих модулей на элементах Пельтье не рентабельно, то в компактных осушителях воздуха они нашли широкое применение, так как способны понижать температуру до точки росы. При этом происходит выпадение конденсата на специально предназначенном для этого элементе, который затем стекает в резервуар.

    Даже несмотря на то, что СОР устройства (КПД) очень невелик, его достаточно, чтобы использовать подобный прибор в качестве осушителя воздуха для небольших помещений.

    Работа с элементами Пельтье

    Подключение термоэлектрического модуля

    Подключение модуля на элементах Пельтье не представляет собой никаких сложностей, так как для этого на два выходящих конца достаточно подать U DC с источника питания ИП. При этом стоит обратить внимание на номинальное напряжение, указанное в техпаспорте.

    На красный конец провода подается «+», на черный – «-».

    Как уже указывалось выше, при ошибочном подключении начинает нагреваться другая поверхность.

    Проверка элемента Пельтье

    С учетом того, что термоэлектрический модуль должен нагреваться с одной стороны и охлаждаться с другой, самый простой вариант протестировать данное устройство – подать на него необходимое напряжение с ИП. При этом, одна сторона у него станет теплой, а вторая – холодной.

    При отсутствии ИП, можно провести проверку подручными средствами, а именно:

    • Взять обычный мультиметр и подключить его клеммы к выводам термоэлектрического модуля.
    • Зажечь пламя от спички или зажигалки и поднести к одной из пластин, прогрев ее.
    • Так как согласно закону Зеебека, разница температур вызовет протекание I, это отразится на экране прибора.

    Важно! Шкала показаний мультиметра должна быть выставлена на замер показаний по току.

    Сборка элемента Пельтье собственными силами

    Для тех, кто желает изготовить элемент Пельтье дома, своими руками, стоит отметить, что это практически невозможно. Подобные термоэлектрические модули легко можно приобрести в соответствующих магазинах радиодеталей, а их стоимость настолько невысока, что собирать его вручную становится просто невыгодным.

    Однако некоторые из подобных устройств на основе элемента Пельтье можно попробовать собрать самостоятельно. К примеру, портативный генератор на термоэлектрическом модуле сможет пригодиться в походах, поездках или долгих путешествиях.

    Для сборки генератора понадобится элемент ИМС L6920:

    Как видно из указанной схемы при входном U от 0,8 до 5,5В на выходных клеммах будет присутствовать U=5В. При использовании термоэлектрического модуля, можно ограничить его Т посредством применения походного котелка с кипятком, за счет чего по закону Зеебека на выходе пойдет ток, что и обеспечит имеющееся напряжение в 5 В.

    Элемент Пельтье своими руками посредством диодов

    Теоретически изготовить подобный элемент Пельтье на диодах вполне возможно.

    С учетом того, что с физической точки зрения работа термоэлектрического модуля заключается в разности проводимостей материалов p-n и n-p, то можно использовать обычные диоды, которые таковыми и являются. Однако, если данная схема будет работать при нагреве, то понизить температуру посредством диодов не представляется возможным.

    Диоды можно использовать как датчик температуры, причем при включении их в цепь в обратном направлении переход откроется, в результате чего I также пойдет в обратном направлении. Однако работать в качестве генератора данная схема не сможет.

    Таким образом, посредством элемента Пельтье можно осуществить сборку различных компактных приборов, что будет являться наиболее доступным и дешевым вариантом.

    Элемент Пельтье — схемы, принцип работы, применение и инструкция по созданию своими руками

    Физический эффект в соответствии с которым, действуют термоэлементы, открыл французский ученый Жан-Шарль Пельтье в первой половине 19 века.

    Он описал случаи выделения либо поглощения тепла при контактах разнородных проводников во время пропускания через них электрического тока.

    Это открытие надолго забыли из-за недостаточного развития электротехники и вспомнили о нем только во второй половине 20 века после начала бурного развития микроэлектроники. Названные именем ученого элементы широко распространены в промышленности и в быту.

    Элементы Пельтье: определение, устройство и принцип работы

    Преобразователь, в результате работы которого под воздействием электричества возникает разность температур, называется элементом Пельтье.

    Элементом Пельтье называется термопара, у которой на разных контактах возникают нагревание и охлаждение под воздействием электричества.

    Это приводит к тому, что разные поверхности полупроводника дают разную температуру. Такая термопара может выделять электричество в достаточном количестве при нагревании только одной поверхности.

    В практике благодаря этому физическому эффекту используют модули состоящие из множества термопар. Все они соединены нагревающимися сторонами одинаково.

    Элемент Пельтье обычно представляет собой несколько термопар, но их может быть и несколько сотен.

    Термопары соединяются шинами, сделанными из меди, которые держат пластинки из керамики.

    Разница температур мощного модуля составляет 75 градусов Цельсия, нужно только грамотно убирать тепло от нагревающейся пластины.

    Для увеличения такой разницы модули соединяют последовательным образом, который называют каскадом.

    Современное использование элементов Пельтье

    Любой прибор используется с учетом его достоинств и смягчением его недостатков.

    Достоинствами элементов Пельтье являются такие их особенности:

    • Статическое использование прибора – для выработки электроэнергии не нужны движения.
    • Легкая регулировка температуры охлаждения или нагревания.
    • Способность термоэлемента быть и нагревателем и охладителем.

    Недостатками этих элементов являются нужда постоянно питать модуль от источника питания и дороговизна модулей состоящих из большого количества термопар.

    Количество вырабатываемой энергии у термоэлементов бывает всякое, от нескольких ватт до тысячи ватт. В таком же диапазоне изменяется их стоимость.

    Необычные свойства термоэлемента позволяют находить разнообразное применение:

    • в маленьких кондиционерах;
    • в передвижных холодильниках, в быту и автомобильных;
    • в офисных охладителях для воды;
    • для безопасного охлаждения вычислительной техники;
    • в качестве переносного или небольшого генератора электроэнергии.

    Кондиционер простейшей конструкции

    На элементах Пельтье работают легко собираемые кондиционеры доступной конструкции, и небольшой производительности, для охлаждения небольших объемов, например, для автомобильного салона.

    Несмотря не дороговизну такого кондиционера экономия расхода горючего на работу обычного климат-контроля делает кондиционер на элементах Пельтье в этом случае выгодным.

    Маломощный холодильник

    Возможно создание на элементах Пельтье только маломощного холодильника, но с большими преимуществами. Эти холодильники:

    • потребляют небольшое количество электроэнергии;
    • обладают простой конструкцией;
    • имеют длительный срок эксплуатации;
    • не шумят;
    • занимают мало места;
    • нормально функционируют лежа на боку и в движении.

    Это важные качества для переносных приборов, таких как автохолодильник.

    Кулер для воды

    Кулер воды – это аппарат, который используется для охлаждения и нагревания воды.

    Термоэлемент хорошо охлаждает воду. Состоит из термостата, термоэлемента и еще некоторых деталей.

    Эта конструкция надежная и недорогая, но имеет небольшие недостатки:

    • в пыльном помещении с загрязненным воздухом аппарат быстро забивается;
    • жидкость охлаждается только до +10 градусов по Цельсию;
    • в жаркую погоду охлаждение воды происходит медленно.

    Осушитель воздуха

    Такой прибор на термоэлементе удачно подходит для комнатного помещения, его конструкция проста и дешевая.

    Модуль термоэлементов быстро охлаждает решетку прибора, через которую прогоняется воздух. При этом конденсируется влага, которая стекает в поддон.

    Охлаждение процессора

    Термоэлектрические модули используются для охлаждения персональных компьютеров.

    Однако такой вид использования термоэлектрического модуля требует особой осторожности, так как есть вероятность, что этот модуль при недостаточной нагрузке процессора снизит температуру до появления конденсата, что может нанести серьезный ущерб компьютеру.

    Если же термоэлектрический модуль совместить с воздушным охлаждением, то получится надежная, но дорогая система.

    Генератор электроэнергии

    Элемент Пельтье может вырабатывать электрическую энергию. Сила получаемого электрического тока повышается с увеличением разброса температур поверхностей термоэлемента.

    Проблема с плавлением припоя внутри модуля. Однако можно использовать очень дорогие припои с высокой температурой плавления.

    Дешевые термоэлектрические генераторы приобретают для использования в отдаленных, безлюдных местах в экспедициях и походах.

    Элемент Пельтье своими руками

    Можно сделать термоэлектрический генератор для походных условий своими руками. Для создания самодельного термогенератора нужны:

    • элемент Пельтье;
    • медная пластина;
    • преобразователь ДС-ДС;
    • или преобразователь напряжения на микросхемах.

    Для обычного термоэлемента нагреваемая сторона должна иметь высокую температуру, но не превышающую 140 градусов.

    В качестве нагревателя можно использовать сосуд с кипятком, тогда за температурой не нужно следить, она не будет превышать 100 градусов. Можно заниматься своими делами.

    Портативный термоэлектрический генератор позволяет от костра зарядить электронные гаджеты одновременно с приготовлением пищи.

    Холодильник своими руками на элементах Пельтье можно сделать из термоэлемента марки ТЕС1 -12706, радиатора, вентилятора и контейнера.

    Исправность элемента Пельтье проверяется пальчиковой батареей.

    Провод, окрашенный красным, присоединяется к плюсу, а провод, окрашенный черным, подключают к минусу. В исправном элементе нагрев одной стороны и охлаждение другой ощущаются пальцами. Проверка осуществима в течение нескольких минут.

    История со столетним перерывом между открытием эффекта Пельтье и его применением в промышленности подчеркивает необходимость соответствия открытия техническому уровню производства. Без микроэлектроники необходимости в применении элементов Пельтье не было.

    На нынешнем уровне развития техники картина совершенно иная. Термоэлектрические элементы нужны всюду, а термоэлектрические генераторы нужны как в сложнейших технических конструкциях, так и у туристического костра.

Ссылка на основную публикацию