Идеально гладкая поверхность труб

Труба стальная цельнотянутая. Параметры, которыми характеризуется бесшовная конструкция

Труба цельнотянутая является одним из самых дорогих видов металлопроката. Это объясняется сложностью ее производства. Изделие отличается высокой надежностью и изготавливается в полном соответствии со стандартами. Бесшовные цельнотянутые трубы широко используются в нефтеперерабатывающей, химической промышленности, авиа- и машиностроении, а также в коммунальном хозяйстве.

Цельнотянутые трубы более прочные, чем сварные, но и стоят дороже

Минусы и плюсы цельнотянутых стальных труб

Область применения стальных труб очень обширная, поскольку отсутствие швов влияет на прочностные характеристики изделий – они становятся практически неуязвимыми. Бесшовная конструкция отличается низким линейным расширением, которое вызвано влиянием высоких температур, коррозионной устойчивостью и не боится больших давлений.

Степень теплопроводности зависит от материала изготовления и, как правило, находится на хорошем уровне. Цельнотянутая стальная труба имеет идеально гладкую поверхность внутри, что способствует улучшению пропускной способности. В сравнении со сварным изделием бесшовная конструкция отличается гораздо лучшими показателями прочности и стойкости к внешнему воздействию.

Из недостатков такого типа металлопроката можно отметить отсутствие гибкости толстостенных изделий, что может привести к определенным трудностям при выполнении ремонтно-строительных работ. Кроме того, для производства труб требуется дорогое оборудование, а сама технология очень сложна. В сочетании с дороговизной материалов это приводит к увеличению себестоимости продукции, поэтому в некоторых случаях использовать подобные изделия нецелесообразно.

Бесшовная конструкция: основные виды

Стальная цельнотянутая труба классифицируется в зависимости от стеночной толщины. В случае, когда стенка больше диаметра, бесшовная конструкция называется особо толстостенная. Кроме того, выделяют особо тонкостенные, тонкостенные и просто толстостенные элементы.

Толщина стенки одного из видов бесшовных труб может достигать 10% от величины диаметра

Обратите внимание! Для первого типа характерна толщина стенки, составляющая не более 2,5% от величины диаметра, для второго – от 2,5 до пяти процентов, для третьего – от 5 до 10%.

Также выделяют легкие, усиленные и обыкновенные конструкции. Усиленные варианты труб отличаются повышенной коррозионной стойкостью, а легкие хорошо поддаются гнутью. Наиболее часто встречается бесшовная конструкция стальная, но возможен выпуск изделий из различных сплавов и цветных металлов. Трубы различаются по технологиям изготовления. По этому признаку выделяют холодно- и горячекатаные изделия.

Сферы использования цельнотянутой продукции

Благодаря отличным прочностным характеристикам, бесшовная труба нашла свое применение в большом количестве отраслей человеческой жизнедеятельности, однако основным является монтаж магистралей различного назначения. В газовой и нефтяной промышленности такие изделия используются для транспортировки топлива.

Отсутствие сварного шва и абсолютно гладкая поверхность внутри позволяет применять такие элементы в трубопроводах подачи питьевой воды. Бесшовная конструкция позволяет устраивать магистрали, транспортирующие агрессивные вещества и находящиеся под высокими давлениями и повышенными температурами.

Без таких труб не обходится атомная промышленность. Они используются в судо-, вагоно-, авиа-, тракторо- и машиностроении, например, для решения задачи передачи вращения вала. Бесшовная полая цельнотянутая конструкция необходима при строительстве угольных шахт и буровых вышек.

Ее целесообразно применять при особо сложных эксплуатационных условиях, когда обычный металл и сварочный шов может не выдержать. Монолитные изделия нашли себя также в оборонной промышленности.

Бесшовные трубы незаменимы для магистралей, работающих в сложных условиях, под повышенным давлением или температурой

Стандартизированные требования к размерам изделий

Требования, которые предъявляются к холоднодеформированным изделиям, изложены в стандарте 8734 от 1975 года. По этому документу бесшовная труба может выпускаться немерной или мерной длины. При первом варианте эта характеристика находится в границах 4,5-9 метров, при втором – от полутора до 11,5 м. Предельные отклонения – не больше 1 см.

По согласованию с заказчиком трубы мерной длины можно выпускать от 4 до девяти метров при неизменном значении предельных отклонений. Изделия кратной мерной длины производятся размерами от полутора до 9 м.

Обратите внимание! Обычно продукцию изготавливают в соответствии с толщиной стенки и наружным диаметром, однако, при требованиях заказчика, можно ориентироваться на другие характеристики, например, разностенность и оба диаметра или стенку и внутренний диаметр.

По желанию заказчика предельные отклонения также могут быть комбинированы. К примеру, по диаметру изделие изготавливается обычной точностью, а по толщине стенки – повышенной.

Производители обязаны следить, чтобы ни разностенность, ни овальность труб не выходили за границы допустимых отклонений. В стандарте также приводятся значения кривизны. Для изделий сечением до 8 миллиметров она не должна быть более 3 мм, в пределах 8-10 мм – более 2 мм на 1 м длины, больше 10 мм – более полутора миллиметров.

Бесшовные изделия специального назначения

Существуют бесшовные трубы специального назначения, которые выпускаются в соответствии со стандартом 9941 от 1981 года. Такому типу металлопроката также характерна мерная, кратная и немерная длина. Толщина стенки варьируется от 0,3 до 24 миллиметров, диаметр – от 5 до 250 мм.

Бесшовные трубы выпускаются в мерной и немерной длине согласно стандартам

Возможная кривизна конструкции определяется в зависимости от параметров. К примеру, для изделий сечением выше 5 мм и стенкой от полмиллиметра этот показатель может быть не более 1 миллиметра на метр, а для диаметра более 15 мм и толщиной металла менее 0,5 мм – до 2 мм.

Края металлопроката должны быть без дефектов и обрезаны под 90 градусов. По желанию потребителя на концах можно наносить фаски под сварку. Это допустимо, когда толщина металла больше 5 мм. В этом случае материал изготовления должен соответствовать особым требованиям. Например, химсостав стали регулируется государственным стандартом 5632, причем часть вредных примесей (серы) не может превышать 0,02%.

Поверхность труб должна характеризоваться отсутствием закатов, раковин и трещин. Исключение составляют изделия, которые не прошли зачистку. При этом на них допускаются единичные плены, небольшие вмятины или риски, но исключается влияние этих дефектов на диаметр и стенку элемента.

Нормы для горячедеформированных труб

Горячедеформированные бесшовные изделия должны в полной мере соответствовать нормам, которые оговорены в государственном стандарте 8732 от 1978 года. В этом документе содержатся таблицы с возможными размерами изделий. Горячедеформированная продукция мерной/немерной длины изготавливается от 4 до 12,5 метров. В случае длины кратной мерной возможен припуск, который не превышает 5 миллиметров на каждый рез.

Производство горячедеформированных труб осуществляется в строгом соответствии с ГОСТами

Обратите внимание! Допустимое предельное отклонение составляет +15 мм, если изделие больше 6 м, +10 мм, если труба короче этой длины.

Как и для холоднодеформированных элементов, разностенность и овальность не должны выводить стенку и диаметр за указанные границы. Кривизна труб зависит от толщины металла (все значения соответствуют одному метру изделия). Если она меньше 20 мм, то параметр не может быть выше 1,5 мм; если 20-30 мм – до 2 мм. Для труб с большей толщиной стенки допустима кривизна до 4 мм.

Проверка качества продукции

Бесшовные цельнотянутые трубы повышенного качества в обязательном порядке подвергаются ряду испытаний. После проверки изделий на отсутствие дефектов поверхности при помощи специальных приборов измеряются диаметр, овальность, длина и кривизна.

Читайте также:  Получение на выходе кратковременного импульса не менее 1000 а

По документу 10006-80 проводится испытание на растяжение. При этом определяется относительное сужение и удлинение трубы после разрыва, временное сопротивление материала и его предел текучести. Согласно требованиям стандарта 19040-81 бесшовные конструкции испытываются на растяжение при повышенных значениях температур. В этом случае устанавливаются характеристики материала при температурах от 35 до 1200 градусов.

Также все элементы проходят проверку гидравлическим давлением. В нормативном документе 17410 оговорены условия проведения ультразвукового контроля. Если хотя бы один показатель не удовлетворяет нормам, то необходимо проведение повторных испытаний на удвоенном количестве образцов.

Секреты производства труб

Рассмотрим процесс производства горячекатаных труб. Он состоит из нескольких технологических этапов. Сырьем выступают заготовки, которые могут быть непрерывно литыми, кованными, катанными или даже слитками.

Заготовкой для трубы служит цельный слиток стали

Обратите внимание! Выбранный тип элемента влияет на класс прочности и класс готовой продукции.

На начальной стадии заготовки поступают на прессы либо станы, где происходит формирование гильзы. Далее ее диаметр увеличивается до требуемого размера. На этом же этапе происходит выравнивание поверхности будущего изделия. Потом труба поступает на стан горячей прокатки. На завершающем этапе выполняется процесс холодной калибровки. В случае необходимости на трубу наносится резьба.

Формирование гильзы выполняется на станках, которые состоят из конусных или грибовидных валков с односторонним вращением. Они расположены в вертикальной плоскости и характеризуются наклоном в несколько градусов. Благодаря вращательно-поступательному движению сечение заготовки, расположенной между осей, уменьшается, а в осевой части появляется небольшое отверстие. Для увеличения диаметра требуется специальная оправка.

Корректировка параметров изделий при изготовлении

Оправка установлена между валами, а гильза из металла насаживается на нее во время следующих проходов. Смещение конструкции можно избежать при помощи неповоротных роликов и направляющих линеек. Для корректировки диаметра трубы существуют разные автоматические установки. Их работа производится по такому принципу: оправка в калибр вставляется так, чтобы оставался зазор, равный стеночной толщине будущего изделия. Далее бесшовная конструкция подвергается прокатке, а оправка каждый раз разворачивается на прямой угол. Для того чтобы труба поступила на оправку, необходимо опущение нижнего ролика установки. После занятия заготовкой нужного места ролик помещается в свое исходное положение.

Холоднодеформированная труба производится на основе горячекатаной заготовки, нагрев которой выполняется до небольших температур. Будущая труба проходит процесс волочения, во время которого происходит ее вытягивание, регулируется диаметр и уменьшается стеночная толщина. Такие элементы отличает высокое качество поверхности. Антикоррозионные свойства труба обретает путем цинкования. Тонкий слой цинка способствует появлению защитной пленки на поверхности металла, которая препятствует его контакту с О2 (кислородом) и его проникновению вглубь. Изделия, обработанные подобным образом, не нуждаются в грунтовке либо покраске.

Цельнотянутые трубы являются незаменимыми элементами конструкций, эксплуатируемых в сложных и агрессивных условиях. Их параметры во многом превосходят прочностные характеристики изделий со швом.

Гидравлически гладкие и шероховатые трубы

Состояние стенок трубы в значитель­ной мере влияет на поведение жидкости в турбу­лентном потоке. Так при ламинарном движении жидкость движется медленно и плавно, спокойно обтекая на своём пути незначительные препятст­вия. Возникающие при этом местные сопротивления настолько ничтожны, что их величи­ной можно пренебречь. В турбулентном же потоке такие малые препятствия служат ис­точником вихревого движения жидкости, что приводит к возрастанию этих малых мест­ных гидравлических сопротивлений, которыми мы в ламинарном потоке пренебрегли. Та­кими малыми препятствиями на стенке трубы являются её неровности. Абсолютная вели­чина таких неровностей зависит от качества обработки трубы. В гидравлике эти неровно­сти стенок трубы называются выступами шероховатости.

Шероховатость характеризуется величиной и формой различных выступов и неровностей, имеющихся на стенках трубы (рис. 5.6).

Рис. 5.6. К понятию абсолютной шероховатости,

гидравлически гладких и шероховатых труб

В качестве основной характеристики шероховатости служит абсолютная шероховатость – , которая равна средней высоте бугорков шероховатости. Отношение абсолютной шероховатости к диаметру трубопровода называется относительной шероховатостью – .

В зависимости от того, как относятся размеры выступов шерохо­ватости и толщина ламинарной пленки, все трубы могут быть при тур­булентном режиме движения подразделены на три вида.

1) Гидравлически гладкие трубы, т.е. толщина ла­минарного слоя больше высоты выступов шероховатости. В этом случае шероховатость стенок не влияет на характер движения и соответственно потери напора не зави­сят от шероховатости.

2) Гидравлически шероховатые трубы, т.е. толщина ла­минарного слоя меньше высоты выступов шероховатости. В этом случае шероховатость стенок влияет на характер движения и соответственно потери напора зави­сят от шероховатости.

3) В третьем слу­чае, являющемся промежуточным между двумя вышеуказанными, аб­солютная высота выступов шероховатости примерно равна толщине ламинарной пленки – d » D. В этом случае трубы относятся к переходной об­ласти сопротивления.

Толщина ламинарной пленки определяется по формуле

. (5.7)

Итак, различают стенки гидравлически гладкие и шероховатые трубы. Такое разделение является условным, поскольку, как следует из формулы (5.7), толщина ламинарной пленки обратно про­порциональна числу Рейнольдса (или средней скорости). Таким обра­зом, при движении вдоль одной и той же поверхности с неизменной вы­сотой выступа шероховатости в зависимости от средней скорости (чис­ла Рейнольдса) толщина ламинарной пленки может изменяться. При увеличении числа Рейнольдса толщина ламинарной пленки d уменьша­ется и стенка, бывшая гидравлически гладкой, может стать шерохова­той, так как высота выступов шероховатости окажется больше толщи­ны ламинарной пленки и шероховатость станет влиять на характер движения и, следовательно, на потери напора.

Для практических расчетов можно принимать ори­ентировочные значения высоты выступа шероховатости для труб: тру­бы новые стальные и чугунные – Δ ≈ 0,45 – 0,50 мм, трубы, бывшие в эксплуатации (так называемые «нормальные»), Δ ≈ 1,35 мм.

Таким образом, зная высоту выступа шероховатости и определив толщину ламинарной пленки, можно опреде­лить гидравлически гладкой или гидравлически шероховатой будет стенка, ограничивающая поток в трубе.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10453 – | 7708 – или читать все.

  • Главная
  • Продукция
  • Изоляционные антикоррозионные покрытия …
  • Антикоррозионное покрытие стальных … егазовой отрасли
  • Внутреннее гладкостное покрытие

Электросварные трубы

Бесшовные трубы

Трубы международных стандартов

Аттестованные трубы

Прочие трубы

Соединительные детали трубопроводов

Изоляционные антикоррозионные покрытия стальных труб

Трубы в ППУ изоляции и комплектующиие

Внутреннее гладкостное покрытие

Внутреннее гладкостное покрытие наносится в соответствии с ТУ 1390-008-86695843-2011. Главным достоинством применения гладкого покрытия можно считать уменьшение трения рабочей среды о стенку.

Вместе с вышесказанным, возможно, выделить ряд позитивных свойств внутритрубных гладких покрытий:

  • достаточно легкий и быстрый ввод трубопроводов в эксплуатацию. Данный факт имеет место быть благодаря уникальным антикоррозионным свойствам покрытия. Труба во время ее хранения практически не стариться и тем более не поддается процессам окисления. Процесс сушки труб после гидравлических испытаний проходит быстрее, чем у обычных черных труб, идеально гладкая поверхность не впитывает влагу. Нет нужды тратить финансовые средства и время на процесс очистки трубы от ржавчины и грязи.
  • благодаря экономии энергии, которая затрачивается на сжатие и перекачку в период работы трубопроводной системы, внутреннее покрытие окупается за 3-5 лет.
  • состав покрытия никак не влияет на состав рабочей среды, обеспечивая его идеальную чистоту.
  • уменьшения затрат на замену запорной арматуры. В трубопроводных системах, выполненных из труб без защитного покрытия, клапаны ломаются чаще из-за газа, который загрязнен продуктами окисления.
  • турбулентность газового потока уменьшается, благодаря внутреннему гладкому слою. Это ведет к более редким случаям критических состояний, которые определяются режимом перемещения газа. Повышается качество режима транспортировки вещества.
  • уменьшение финансового обеспечения содержания трубопровода, благодаря возможности уменьшить диаметр труб, за счет увеличения в целом пропускной способности газопровода.
Читайте также:  Инфракрасные обогреватели для сауны: правила выбора и установка

В каждом конкретном проекте не всегда можно говорить о сочетании всех этих плюсов, которые дает применение внутреннего гладкостного покрытия, но даже поодиночно каждый из них способен за недолгое время обеспечить окупаемость системы.

Для удовлетворительной и продолжительной работы газовой трубы, ее внутренний защитный слой должен быть толщиной 40-75 мкм.

Для решения вопроса о применении труб с внутренним гладкостным покрытием следует учитывать следующие факторы:

  • скорость потока;
  • конструкцию,
  • диаметр газопровода;
  • энергетические затраты;
  • месторасположение;
  • материалы;
  • капитальные затраты;
  • эксплуатационные затраты;
  • срок окупаемости;
  • другие факторы.

Эффективность применения труб с внутренним гладким покрытием прямо пропорциональна диаметру газопровода. Что касается транспортировки жидких сред, в этом случаем эффективность применения гладкостного покрытия будет обратно пропорциональна диаметру трубопровода.

wiki.eduVdom.com

Инструменты пользователя

Инструменты сайта

Боковая панель

Теория вероятностей и математическая статистика
Строительная механика для строительных специальностей
Матанализ. Дифференциальное и интегральное исчисление
economics

Теоретическая механика. Статика:

Контакты

Простейшие типы связей

1. Идеально гладкая поверхность. Рассмотрим тело, которое может перемещаться без трения по гладкой горизонтальной поверхности (Рис.1а).

Пусть в качестве активной силы выступает сила веса $vec<Р>$, приложенная в его центре тяжести. Реакция связи $vec$ представлена силой, распределенной по плоскости нижней грани этого тела, и ее можно считать приложенной в центре этой грани.

Идеально гладкая поверхность

Принципиально картина не меняется, если поверхность тела или связи будет гладкой, но криволинейной (Рис.1б).

Пусть тело в виде бруса с гладкой поверхностью опирается в точке А на идеально гладкую поверхность, а в точке В – на уступ (Рис.1в).

Нетрудно догадаться, что тело не сможет находиться в равновесии, если в качестве активной силы выступает его собственный вес, однако равновесие возможно, если к этому брусу приложить некоторую другую внешнюю силу $vec$. При этом, как будет показано в следующей главе, равновесие возможно только в том случае, если линия действия этой силы проходит через точку пересечения линий действия реакций $R_A$ и $R_B$.

Итак, по поводу этого типа связи можно сделать следующий вывод: реакция идеально гладкой поверхности приложена в точке касания и направлена по нормали к поверхности тела или связи.

2. Гибкая невесомая и нерастяжимая нить. Рассмотрим тело, которое подвешено на двух таких нитях и находится в равновесии под действием собственного веса и реакций нитей, прикрепленных к телу в точках А и В (Рис.2 слева).

Слева: Гибкая невесомая и нерастяжимая нить

Реакция связи равна силе натяжения нити, она направлена вдоль нити и от тела, которое эта нить удерживает.

3. Жесткий невесомый прямолинейный стержень. Реакция направлена вдоль стержня, который, в отличие от нити, может воспринимать как растягивающие ($vec$), так и сжимающие ($vec$) усилия (Рис.2 справа).

Справа: Жесткий невесомый прямолинейный стержень

4. Подвижная опора. Допускает перемещение закрепленным таким образом точки тела только вдоль опорной плоскости (Рис.3а).

Реакция направлена перпендикулярно заштрихованной опорной площадке.

В учебной литературе этот вид связи также называют подвижным цилиндрическим шарниром.

Помимо стандартного обозначения, предусмотренного ГОСТом, на схемах эту связь изображают так, как показано на рис.3б.

Отметим, что четыре рассмотренные связи имеют одну общую особенность: соответствующие им реакции известны по направлению и неизвестны по величине. То есть с точки зрения алгебры каждая из этих реакций соответствует только одному неизвестному.

5. Неподвижная опора. Препятствует перемещению закрепленной таким образом точки тела в горизонтальном и вертикальном направлениях. Это означает, что в общем случае реакция $vec$ такой связи неизвестна по величине и по направлению. В качестве неизвестных при ее определении можно выбрать модуль реакции – $|vec|$ и угол $varphi$, который она образует с осью Ox , либо проекции вектора $vec$ на оси координат: RAX , RAY (Рис.4а).

Эта связь допускает поворот тела вокруг рассматриваемой точки, поэтому в учебной литературе эту связь также называют неподвижным цилиндрическим шарниром.

Помимо стандартного обозначения, предусмотренного ГОСТом, на схемах она изображается так, как показано на рис.4б.

6. Сферический шарнир. В отличие от цилиндрического шарнира не допускает перемещения закрепленной таким образом точки тела в трех взаимно перпендикулярных направлениях. В качестве неизвестных при ее определении выбирают проекции этой реакции на оси координат: RAX , RAY , RAZ (Рис.5).

Рассмотренными в этом параграфе шестью типами связей мы и ограничимся. Другие связи будут рассмотрены по мере необходимости.

Процесс производства бесшовной трубы

Технология промышленного производства бесшовной трубы невероятно сложна и трудоемка. Каждый этап требует огромных затрат энергии и материалов.

Такие трубы часто используются для транспортировки стерильных сред, например молока, поэтому к их изготовлению предъявляются самые строгие требования.

Основное конкурентное преимущество бесшовных труб — отсутствие сварных швов, являющихся самым уязвимым местом любой сварной трубы. По этому к процедуре соединения предъявляются высокие требования надежности.Описание способа горячекатаного прокатаНержавеющий металл должен быть очищен от посторонних примесей, а сам процесс производства — тщательно контролироваться на всех этапах:Металлическая заготовка из легированной стали разогревается до определённой температуры в печи1250—1300°С .Нагретая докрасна, она подается на прессовально-прошивочный стан, где гигантское шило «пуансон «из специального состава, пронизывает заготовку насквозь, с напылением смазки на пуансон. (Рис.1)

После этого будущая труба раскатывается валиками до заданной длины, с требуемыми показателями толщины стенок, наружного и внутреннего диаметра.Готовый элемент остывает и подвергается конечной калибровке в специальной емкости.

Заключительный этап — подготовка отрезков необходимой длины и маркировка готовых к продаже изделий.Некоторые марки бесшовных стальных труб подвергаются особой процедуре дополнительной закалки. Изделие нагревается, после чего быстро охлаждается. Повторенная несколько раз, процедура перестраивает молекулярную решетку стали, сообщая ей новые свойства.

©Видео с youtube.com/ https://www.youtube.com/embed/UzqeZdHV9Sc

Для производства бесшовных труб из нержавеющей стали применяются следующие марки стали:

12Х18Н10Т. Наиболее устойчива к коррозии, используется чаще других. Легирующие добавки: никель, титан и хром. Хром усиливает антикоррозийные свойства, титан усиливает прочность, никель сообщает сплаву необходимую пластичность.

10Х17Н13М2Т. Отлично подходит для транспортировки химикатов с высокой кислотностью. Главные потребители такой продукции — химические и медицинские предприятия, пищевые производства

06ХН28МДТ. Успешно эксплуатируется в нефтехимической и металлургической отраслях.

10Х23Н18. Высоколегированный сорт стали, обладающий повышенной устойчивостью к большим температурам и воздействию открытого огня. Трубы из такой стали находят применение в строительстве камер для сжигания топлива, высокотемпературных котлов. Легко выдерживают продолжительное воздействие температур до 1100 °C.

Рис. 1 Схема прошивки заготовки пуансоном

Схема работы стана © mv-steel.ru

Технические характеристикиБесшовные трубы из нержавеющей стали выгодно отличаются показателями прочности и устойчивости к образованию ржавчины. Отсутствие сварных швов гарантированно защищает изделия от околошовной коррозии.

В сравнении с электросварными аналогами можно выделить ряд преимуществ:Труба не имеет сварного шва — самого слабого участка изделия.Имеет одинаковую прочность на всем протяжении.Помимо этого, такие трубы эффективно эксплуатируются при высоких показателях давления носителя, и способны противостоять разрушительным внешним воздействиям. Это дает возможность использовать их в условиях повышенной влажности, высоких и низких температур окружающей среды. Пороговое значение температуры для простого носителя составляет 800 °C, для агрессивных химикатов — 350 °C.

Из прочих важных характеристик можно отметить:

Сопротивление материала на разрыв — не менее 529 Н/кв.мм.Показатель относительного удлинения — не менее 40%.Содержание серы в стали не — менее 0,02%.

Допустимая кривизна изделий также жестко регламентирована и не должна превышать следующих значений:

Трубы с толщиной стенок свыше 0,5 мм — 1 мм на 1 м длины.Изделия с толщиной стенок менее 0,5 мм и сечением свыше 15 мм — 2 мм на 1 м длины.

Виды бесшовных труб

В зависимости от технологии производства, промышленность предлагает потребителям два типа изделий: горячекатаные и холоднокатаные трубы.

Можно также встретить термин горячепрессованные или горячедеформированные. Выпускаются по ГОСТ 9940-81. Технология горячей прокатки не позволяет делать трубы малых диаметров. Кроме того, в этом случае не всегда удается получить идеально гладкую поверхность трубы и гарантировать точность размеров.

Иначе — холоднотянутые или холоднодеформированные. Их производство регламентируется ГОСТ 9941-81. От горячекатаных отличаются, в первую очередь, меньшим сечением и тонкими стенками. Поверхность труб при таком способе производства более гладкая. При выпуске изделий с отличным от круглого типом сечения (прямоугольник, звезда, овал, шестигранник ) используется только метод холодной деформации.

Толстостенные и тонкостенные трубы

Другой критерий — толщина стенки изделия. Этот показатель во многом определяет сферу применения трубного материала. Разделяют толстостенные и тонкостенные стальные трубы:

Горячекатаная бесшовная труба имеет диаметр 28-426 мм, при толщине стенки — 3-40 мм.Холодный прокат допускает производство труб диаметром 0,3-450 мм с толщиной стенок 0,06-12 мм.

Резка труб осуществляется под прямым углом. Область спила в обязательном порядке зачищается от неровностей и заусенцев. Поверхность изделия должна иметь однородную структуру, без трещин, вмятин или закатов.

Как делают бесшовные трубы

Бесшовные трубы — это разновидность металлопроката, технология производства которого предусматривает отсутствие каких-либо швов по всей длине изделий. Такие детали не содержат и других соединений. Такие сплошные заготовки изготавливаются на специальных прокатных станках. Поэтому производственный процесс получил название «прокатка».

Бесшовные трубы являются цельными изделиями и не содержат швов, а также других соединений. В первую очередь в зависимости от технологии производства бесшовные трубы подразделяются на два вида:

Также существуют цельнотянутые детали, которые относятся к особой группе бесшовного металлопроката. Такие изделия отличаются тем, что имеют толстые стенки.

Изделия, которые имеют шов, в свою очередь, выполняются с помощью двух основных методов:

– сварка (заготовка сваривается по спирали);

– фальцовка (согнутый лист закрепляется продольно специальным фальцем).

Бесшовные трубы отличаются высокими прочностными характеристиками, поэтому их, как правило, используют в коммуникациях с высокими показателями давления.

Материалом для таких деталей в большинстве случаев выступает сталь. Это связано с тем, что этот материал обладает высокой прочностью. Рассмотрим и другие достоинства этих изделий:

высокий коэффициент теплопроводности;

низкий показатель линейного расширения;

антикоррозийная стойкость толстостенной продукции.

К основным недостаткам таких изделий можно отнести:

Для того, чтобы проложить коммуникацию из таких труб, важен правильный расчёт основных параметров. К ним можно отнести показатели сечения труб и толщину их стенок.

Бесшовные трубы используются в ответственных конструкциях, которые работают под высоким давлением. Для транспортировки токсичных веществ применяются преимущественно горячекатаные бесшовные изделия.

Кроме этого, изделия, выполненные методом горячей прокатки, широко эксплуатируются в автомобилестроении, авиации и т. д. А также используются для транспортировки агрессивных химических веществ и нефти (химическая и нефтяная отрасли).

Использование таких деталей также востребовано в коммунальной сфере. Из них монтируются различные хозяйственные коммуникации, которые осуществляют транспортировку горячей воды, холодной воды, газа, а также отвод стоков (канализационная система).

В угледобывающей сфере такие изделия используются для отвода пара и других продуктов от оборудования. Кроме этого, сплошные трубы используются в оборонной промышленности, кораблестроении, металлургии. Обширность эксплуатации бесшовных изделий объясняется их высокой надёжностью. Из них выполняются довольно сложные, с конструктивной точки зрения, коммуникации, которые используются в тяжелых областях производства.

Как делают бесшовную трубу с помощью метода горячей прокатки? Этот процесс сопровождается большими финансовыми расходами, поэтому стоимость таких изделий также является довольно большой. Рассмотрим поэтапно производство бесшовных труб, посредством наиболее популярного метода — горячей прокатки:

На первом этапе происходит подготовительная работа. Заготовка подготавливается к последующей обработке. Заготовка является полым элементом, который имеет определённые показатели сечения и длины. Изготовление такой заготовки происходит из особого вида стали. Перед прокаткой этого первичного элемента, его нагревают до высоких температур (1180–1200 °C).

На втором этапе выполняется формирование гильзы. Гильзу получают с помощью специального высокомощного сверла, которое пробуривает в заготовке отверстие определённых размеров. После завершения процесса деталь уже напоминает трубу, однако, не является окончательным продуктом.

И, наконец, на третьем этапе происходит основной процесс — прокатка. Прокатка включает в себя ряд процессов: гильзу помещают на специальные прокатные станки, в состав которых входит несколько валиков, далее расположенная между двумя валиками гильза постепенно вытягивается в одном из направлений. Элементом контроля диаметра будущей трубы выступает специальный ограничительный элемент.

Для того, чтобы готовая труба соответствовала необходимым параметрам, вышеперечисленные манипуляции проводятся несколько раз, до получения нужного изделия.

А также стоит отметить, что производство бесшовных труб — сложный процесс, который требует соблюдения всех технических норм и правил безопасности. Производство бесшовного металлопроката выполняется только на специальных предприятиях, оснащённых всем необходимым для этого оборудованием.

Добавить комментарий