Получение на выходе кратковременного импульса не менее 1000 а

Ждущий мультивибратор

Так называют генератор одиночных импульсов. При кратковременном сигнале на входе он формирует электрический импульс прямоугольной формы вполне определенной длительности (она не зависит от длительности входного, т. е. запускающего, импульса), после чего переходит в ждущий режим и не работает до прихода следующего запускающего сигнала.

Схему простейшего ждущего мультивибратора вы видите на рис. 13, а. В нем также два логических элемента, но первый из них используется по своему прямому назначению – как элемент 2И-НЕ, а второй как инвертор. Кнопочный выключатель SB1 выполняет функцию датчика запускающих сигналов. Чтобы генерируемые импульсы можно было индицировать вольтметром постоянного тока, светодиодом или иным подобным сравнительно инерционным прибором, емкость конденсатора С1 должна быть не менее 500 мкФ, а сопротивление резистора R1 -1. 1,5 кОм. Можно обойтись без выключателя SB1, имитируя сигнал датчика замыканием отрезком монтажного провода вывода 1 первого элемента на общую шину питания микросхемы.

Смонтировав мультивибратор и включив питание, сразу же измерьте напряжения на входах и выходах элементов. На входном выводе 2 первого элемента и выходе второго элемента оно должно соответствовать высокому уровню напряжения, а на выходе первого элемента и входах второго – низкому уровню. Следовательно, в ждущем режиме первый элемент находится в нулевом состоянии, а второй – в единичном.

Затем подключите вольтметр к выходу второго элемента и, наблюдая за стрелкой индикатора, кратковременно замкните контакты выключателя SB1. Как на это реагирует измерительный прибор? Его стрелка резко отклоняется влево почти до нулевой отметки шкалы, а примерно через 2 с так же резко возвращается в исходное положение. Прибор фиксирует появление импульса отрицательной полярности. А светодиод? Он светится во время импульса. Повторите опыт несколько раз – эффект будет тот же. Подключите параллельно конденсатору еще один – емкостью 1000 мкФ – и повторите опыт. Длительность импульса увеличится почти втрое. Замените резисторы переменным сопротивлением около 2 кОм (но не более 2,2 кОм). Теперь, пользуясь только этим резистором, вы сможете в некоторых пределах изменять длительность генерируемых импульсов. Но при его сопротивлении менее 100 Ом мультивибратор перестанет работать.

Вывод напрашивается сам: длительность одиночных импульсов ждущего мультивибратора будет тем больше, чем больше емкость времязадающего конденсатора С1 и сопротивление резистора R1. При небольшой емкости конденсатора и малом сопротивлении резистора импульсы становятся столь короткими, что индикаторы, которыми вы пользуетесь, оказываются неспособными на них реагировать.

Разобраться в сущности действия ждущего мультивибратора помогут временные диаграммы, приведенные на рис. 13, б. Поскольку в ждущем режиме входной вывод 1 первого элемента ни с чем не соединен (контакты кнопочного выключателя разомкнуты), это эквивалентно подаче на его вход высокого уровня напряжения. Но на выходе первого элемента низкий уровень напряжения. На входе второго элемента также низкий уровень напряжения, так как падение напряжения на резисторе, создаваемое входным током элемента, удерживает входной транзистор элемента в закрытом состоянии. Высокий же уровень напряжения на выходе этого элемента поддерживает первый элемент в нулевом состоянии. Поданный на входной вывод 1 запускающий импульс отрицательной полярности (тзап на верхнем графике) переключает первый элемент в единичное состояние. Создающийся в этот момент (t1) скачок положительного напряжения на его выходе передается через конденсатор на входы второго элемента и переключает его из единичного состояния в нулевое. Такое состояние элементов сохраняется и после окончания действия запускающего импульса.

С момента появления положительного импульса на выходе первого элемента начинает заряжаться конденсатор – через выходной каскад первого элемента и резистор. По мере зарядки конденсатора напряжение на резисторе падает. Как только оно снизится до порогового, второй элемент переключится в единичное состояние, а первый – в нулевое. Теперь конденсатор быстро разрядится через выходной каскад первого элемента и входное сопротивление второго элемента, и устройство окажется в ждущем режиме.

При проведении опытов и экспериментов с ждущим мультивибратором учитывайте, что для нормальной его работы длительность запускающего импульса должна быть меньше длительности формируемого импульса. Какие практические применения может найти мультивибратор на логических элементах микросхемы К155ЛАЗ?

Механизм передачи импульса от ног штанге при выполнении жима штанги лежа

Импульсные устройства

Общая характеристика импульсных устройств

Импульсом — называется кратковременное изменение тока или напряжения до своего амплитудного значения, после которого следует пауза.

Импульсный режим работы имеет ряд преимуществ над непрерывным:

  1. В импульсном режиме может быть достигнута значительная мощность во время действия импульсов при малом значении средней мощности устройства. В результате габариты и масса электронной аппаратуры при использовании импульсного режима могут быть значимо снижены;
  2. Импульсный режим позволяет ослабить влияние температуры и разброса параметров полупроводниковых приборов на работу устройств, так как приборы в них работают, как правило, в ключевом режиме;
  3. Импульсный режим позволяет значимо повысить пропускную способность и помехоустойчивость электронной аппаратуры. Пропускная способность — наибольшая возможная скорость передачи информации, а помехоустойчивость — способность аппаратуры правильно функционировать в условиях действиях помех. Сигналы импульсных устройств и представляются комбинацией стандартных импульсов, поэтому скорость передачи таких сигналов выше, чем непрерывных.
  4. Для реализации импульсных устройств, требуется большое число сравнительно простых однотипных элементов, легко выполняемых методами интегральной технологии. Это позволяет повысить надёжность, уменьшить габариты и массу электронной аппаратуры.

Импульсные устройства широко распространены в вычислительной технике, радиолокации, телевидении, автоматике, промышленной электронике.

Импульсы бывают различной формы, наиболее часто встречаются прямоугольные, трапециевидные, треугольные, экспоненциальные и другой формы.

Они также бывают положительной и отрицательной полярности.

Часто импульсы встречаются в виде серий или последовательности.

Серия как правило имеет конечное число импульсов. В последовательности число импульсов не ограниченно.

Последовательности бывают: периодические, квазипериодические, непериодические.

В периодических одинаковые импульсы повторяются через равные промежутки времени.

В квазипериодических через равные промежутки времени повторяются не все параметры импульсов (длительность, амплитуда).

Непериодическими называются такие последовательности которые не подчиняются закону периодичности. Они могут быть случайные либо детерминированные т.е. подчинятся какому ни будь математическому закону.

Параметры последовательности

tu – время активной длительности импульса (определяется на уровне >0,5 от амплетуды).

tn – время паузы.

T – период следования импульсов.

Величину обратную периоду T-называют частотой следования импульсов .

Скважностью импульса — называют отношение периода следования импульса к его продолжительности.

Скважность может меняться от 1,1 до тысяч и десятков тысяч. Она показывает как накопленная энергия во время паузы отдается в электрическую цепь в виде импульсов.

Величина обратная скважности называется коэффициент заполнения.

Все импульсы делятся на видеоимпульсы и радиоимпульсы.

Видеоимпульсом называют кратковременное изменение постоянного тока или напряжения.

Радиоимпульсом — называют высокочастотные колебания огибающая которого имеет форму видеоимпульса.

Компараторы сигналов на ОУ

Компаратором

называют устройство для сравнения двух сигналов. При этом выходной сигнал компаратора характеризует факт превышения одного сигнала над другим и имеет смысл логического сигнала.

В схемах компараторов можно использовать как один вход ОУ, так и оба. Петля ООС обычно не замыкается. Если в схеме компаратора ОУ охватить слабой положительной ОС, то передаточная характеристика компаратора приобретает гистерезисные свойства.

В момент равенства входных сигналов на абсолютной величине входное напряжение компаратора Uвых переключается в другое предельное состояние.

До момента времени  напряжение Uс меньше по модулю, чем опорное напряжение Е оп, поэтому последнее определяет состояние выхода.

В данном случае Е оп > 0, поэтому Uвых  – Е.

После достижения входным сигналом Uc порогового значения , выходное напряжение определяется входным напряжением Uc, при этом Uвых+Е.

В момент точного равенства , усилитель компаратора находится в неустойчивом линейном режиме. Переключение состояния выхода происходит с некоторой задержкой , которая определяется временем перезарядки паразитных ёмкостей схемы ОУ.

Одноходовой компаратор

имеет ограниченное входное сопротивление, однако позволяет сравнивать большие по амплитуде сигналы без появления ошибок синфазной составляющей Uсинф.

Амплитуда сигналов между входами ОУ не должна превышать допустимого уровня входных дифференциальных сигналов, однако точность сравнения сигналов тем выше, чем больше амплитуда.

Резистор R3 необходимо включать равным .

Двухвходовой компаратор

позволяет сравнивать сигналы одинаковой полярности.

Уровень этих сигналов должен находиться в пределах допустимого для данного ОУ симфазного входного напряжения. Когда сигналы, подаваемые на разные входы, уравниваются, выходной сигнал компаратора должен быть равен нулю.

Компаратор, уровни включения и выключения которого не совпадают, называют триггером Шмидта.

Разница в уровнях называется гистерезисом переключения.

Триггер Шмидта может быть построен на двух транзисторных каскадах усиления, охваченных ПОС, или на компараторе с ПОС.

Если к инвертирующему входу приложено достаточно большое отрицательное напряжение Uвх, то выходное напряжение компаратора Uвых = Uвых max. При этом напряжение прямого входа .

Если увеличить Uвх, то U вых не изменится до тех пор, пока Uвх 1, где К — коэффициент усиления ОУ;

В основном применяют триггер Шмидта для формирования напряжения прямоугольной формы из входного напряжения произвольной формы.

Также компараторы применяются в качестве порогового устройства для регистрации превышения входным напряжением порогового напряжения или для восстановления искажённых сигналов.

Триггер Шмитта на усилительных каскадах

В исходном состоянии (при Uвх E1) схемы транзистор VT1 открыт, а транзистор VT2 закрыт.

Напряжение на выходе возрастает до значения, близкого к напряжению источника питания Ек. при снижении напряжения до уровня Е2 схема возвращается в исходное состояние.

импульс компаратор вибратор триггер

Мультивибраторы и одновибраторы

Для получения прямоугольных импульсов широко используют устройства, называемые релаксационными генераторами.

Релаксаторы, как и триггеры, относятся к классу спусковых устройств и основаны на применении усилителей с ПОС.

В отличие от триггеров релаксаторы не имеют двух устойчивых состояний и могут обладать только одним. Но они имеют состояния квазиравновесия, характеризуемые сравнительно медленными изменениями токов и напряжений, приводящими к некоторому критическому состоянию, при котором создаётся условие для скачкообразного перехода релаксатора из одного состояния в другое.

Релаксаторы могут работать в одном из 3 режимов:

  1. Автоколебательном;
  2. Ждущем;
  3. Синхронизации.

В режиме автоколебаний в релаксаторе нет состояний устойчивого равновесия, имеется только 2 состояния квазиравновесия, в которые он переходит без внешних воздействий, генерируя импульсы, параметры которых зависят от параметров релаксатора. Такой релаксатор называется мультивибратором.

В ждущем режиме релаксатор имеет состояние устойчивого равновесия и состояние квазиравновесия.

Переход из первого состояние во второе происходит под воздействием внешнего запускающего импульса, а обратный переход — самопроизвольно по истечении некоторого времени, определяемого параметрами устройства. Т. е. В ждущем режиме релаксатор генерирует один импульс с определёнными параметрами. Отсюда и название устройства — одновибратор.

В режиме синхронизации частота повторения импульсов релаксатора определяется частотой внешнего синхронизирующего напряжения. Релаксатор имеет два передующих состояния квазиравновесия, а время пребывания в этих состояниях зависит также от состояния синхронизирующего напряжения.

Рассмотрим мультивибраторы на ОУ.

Мультивибратор построен на основе инвертирующего триггера Шмитта в котором ООС осуществляется через фильтр низких частот в виде RC –цепи.

При включении питания схема устанавливается в случайное состояние (например Uвых = Uвыхmax).

Напряжение на инвертирующем входе равное Uс отрицательно, а на прямом положительно и равно .

Конденсатор заряжается через R3 и Uc= U – возрастает и стремится к Uвыхmax.

Когда Uс достигнет напряжения делителя R1 R2 уровня Uвыкл, схема переключится в противоположное состояние до Uвыхmin.

Конденсатор начнёт перезаряжаться от Uвыкл до Uвыхmin и обратное переключение произойдёт при Uc= Uвкл. Затем процесс периодически повторяется.

Длительность импульса мультивибратора: , период

При R1 = R2 Т  2,2 R3 C

Одновибратор

Схема отличается наличием прямого входа через конденсатор С1 и диода VD включённого параллельно конденсатору С2.

Допустим, что выходное напряжение одновибратора равно Uвых min. Тогда на инверсном входе напряжение U- равно напряжению открытого диода U  0.

На прямом входе напряжение отрицательно и равно .

Если на прямой вход поступает короткий входной положительный импульс напряжения, амплитуда которого не менее , то триггер Шмитта скачком переходит в противоположное состояние и Uвых = Uвыхmaxтогда .

Конденсатор С2 заряжается через R3 при этом диод закрыт и напряжение U- стремится к Uвыхmax по экспоненте.

При U- = Uвыкл происходит обратное переключение триггера Шмитта, и конденсатор С2 перезаряжается до Uвыхmшт. Однако когда напряжение Uс становится 0 открывается диод VD и дальнейшего изменения Uc не происходит. Т.о. одновибратор вернётся в исходное состояние.

Длительность импульса одновибратора не зависит от длительности входного импульса если он меньше tи.

Время восстановления мультивибратора , время через которое одновибратор готов к приёму следующего импульса.

Мультивибраторы и одновибраторы могут быть выполнены на логических элементах.

К примеру схема мультивибратора.

Состояние квазиравновесия удерживается в течении времени, требуемого для перезарядки конденсаторов до уровней соответствующих порогу срабатывания элементов. После этого состояние логических элементов изменяется на противоположное и процессы повторяются.

На выходе мультивибратор генерирует прямоугольные импульсы противоположных полярностей. Если R1 = R2 = R, С1 = С2 = С, то импульсы симметричны.

Длительность импульсов , где U(1) — напряжение логической “1”.

Читайте также:  Устройство печи для бани: принципы работы, которые необходимо понимать

Мультивибраторы и одновибраторы на логических элементах позволяют получать импульсы с малой длительностью фронта и спада. Однако температурная стабильность и диапазон регулирования длительности импульсов у них ниже, чем в схемах на ОУ.

Генератор напряжения треугольной и пилообразной формы

Схема представляет собой модель двухпозиционной схемы автоматического регулирования с интегрирующим объектом, т.е. состоит из двух частей: триггера Шмитта и интегратора.

При включении схемы триггер Шмитта устанавливается в одно из двух состояний.

Если на его выходе “+”, диод VD1 открыт и интегратор интегрирует в “–” с постоянной временной R3 C до напряжения Uсрабатывания. Затем триггер Шмитта переключается и интегратор интегнрирует в “+”. При этом VD1 закрыт, а VD2 открыт.

Постоянная интегрирования
R4C
Соотношение резисторов определяет соотношение скорости интегрирования и то есть формы Uвых 2.

Если R3 =R4 или используют 1 резистор, то Uвых 2 треугольной формы. Иначе Uвых 2 ближе к пилообразному.

На Uвых 1 генерируется напряжение прямоугольной формы.

Амплитуда Uвых 2 определяется соотношением . Схема является очень точной, так как интегратор является очень точным элементом.

Классы защиты

По воздействию перегрузки могут быть двух типов волны повышенных напряжений: 8/20 или 10/350 микросекунды. Первое значение – время возрастания тока перегрузки, а второе означает время его затухания до нормальных значений тока в цепи. Второй тип значительно опаснее по степени воздействия.

Устройства 1 класса защиты предохраняют цепь от перегрузок 10/350 мкс. Такие нагрузки возникают при попадании молнии в линию электропередач на расстоянии менее 1,5 км от потребителя, ток перегрузки может составлять 25-100 кА. Большинство УЗИП 1 класса защиты собраны на разрядниках.


Что такое промежуточное реле: конструкция, принцип действия, устройство и идеи по применению (115 фото)

Самодельный блок питания на 12 вольт: подбор компонентов и простые схемы для создания своими руками. 130 фото самодельных универсальных блоков

Как работает реле контроля напряжения: принцип работы защиты и нюансы подключения реле контроля для дома или квартиры

УЗИП 2 и 3 класса рассчитаны на нагрузку типа 8/20 мкс и собираются на полупроводниках. Разница между ними в силе тока, воздействующего при перегрузке. Для 2 класса он может колебаться от 10 до 40 кА, а для 3 класса – не превышает 10 кА.

Сравнение направляющих для станков: полированные валы, цилиндрические направляющие, профильные направляющие. Плюсы и минусы каждого. Как выбрать?

В станках с ЧПУ (числовым программным управлением) применяются различные типы направляющих. Это узлы, служащие для выполнения определенного спектра задач:

  1. Перемещать движущиеся компоненты станка по заданной траектории.
  2. Выдерживать нагрузки в процессе работы.
  3. Быть опорой для компонентов станка.

Важно, чтобы перемещение по направляющим выполнялось с необходимой точностью и минимальным трением. О том, какие направляющие отвечают требованиям и являются лучшими по соотношению цена/качество, мы поговорим в данной статье.

Полированные валы

Валы круглого сечения являются бюджетным и востребованным решением. Производятся из прочной высоколегированной стали, как правило, шарикоподшипникового типа (например, ШХ-15). Простые в монтаже и обработке, полированные валы в процессе производства подвергаются индукционному накаливанию и шлифовке для увеличения срока службы. Полированный верхний слой обеспечивает низкий уровень трения. Фиксация и монтаж ручные – с двух концов вала. Однако при всех очевидных плюсах вала круглого сечения, он обладает и рядом недостатков:

  1. Отсутствует фиксация к станине. Вал устанавливается двумя крепежами на концах, что увеличивает степень погрешности в процессе обработки.
  2. Со временем вал может искривляться и провисать из-за отсутствия фиксации на основании. Это делает невозможным использование полированных валов длинною более 1 метра.

Простые в разработке, полированные валы могут производиться кустарно из нетвердых металлов низкого качества. Мы рекомендуем приобретать продукцию у крупных поставщиков.

Полированные валы на опоре (цилиндрические рельсы)

Валы данного типа имеют опоры – рельсы цилиндрического вида, осуществляющие поддержание на всей рабочей области станка. Благодаря этому снижается возможность прогиба под весом на длинных участках.

Опорные валы крепятся к основанию станка с помощью отверстий резьбового типа. Как и у полированных, у цилиндрических валов те же недостатки – недолговечность, значительный зазор втулок.

Однако недостатки компенсируются плюсом инструмента – более высокая грузоподъемность за счет отсутствия провисания по длине. При этом стоит отметить, что возможно снижение точности при использовании опорного вала на небольшом станке с тяжелой кареткой. Качество цилиндрических валов сильно разнится и зависит от конкретного производителя.

Профильные рельсовые направляющие

Профильные направляющие делятся на два основных типа: шариковые и роликовые. В отличие от предыдущих примеров, профильные направляющие имеют повышенную точность. Они крепятся прямо к станине, благодаря чему имеют долгий срок эксплуатации, высокий уровень грузоподъемности и износостойкости, небольшой люфт (зазор между поверхностями) или абсолютное его отсутствие.

Профильные направляющие осуществляют одинаковое распределение нагрузки по длине, обеспечивая высокую точность и прямолинейность даже при перемещении тяжелой каретки. Устанавливаются на станки, фрезерующие металлы (сталь, чугун), камень и т.д.

  1. Сложная установка к станку.
  2. Места крепления должны обладать низкой шероховатостью и высокой прямолинейностью.

Профильные направляющие сложны и дорогостоящи в производстве, отчего их практически не производят кустарно. Поэтому большая часть представленной на рынке продукции имеет высокое качество.

Резюмируя:

  • Если вы планируете использовать станок с рабочей длиною более метра, хотите заниматься фрезеровкой жесткого металла, то следует использовать профильные направляющие.
  • Если же вы хотите заниматься обработкой мягких материалов, используя станок с рабочей областью меньше метра, то вам подойдут цилиндрические рельсы и полированные валы.

На сегодня всё. Мы надеемся, что данный материал поможет вам в подборе подходящих компонентов к станку. Если у вас есть вопросы по данной теме, свяжитесь с нами любым удобным для Вас способом. Будем рады ответить.

Как выбрать направляющие для ЧПУ станка?

Все подвижные узлы в станках ЧПУ для обеспечения высокой точности выполняемых работ движутся по направляющим. Поэтому точность и скорость обработки материалов, долговечность всего оборудования в целом, качество работы и даже затрачиваемая мощность ЧПУ станков в большой степени зависят от кого, какие используются линейные направляющие.

На что нужно обратить внимание при выборе линейных направляющих?

От качества изготовления направляющих для ЧПУ станка и хорошего технического состояния зависит эффективность работы на всем оборудовании, потому их подбор и своевременное обслуживание являются задачами первостепенной важности на любом предприятии. Выбирая направляющие фрезерного станка, следует учитывать самые высокие конструктивные требования:

  1. Должна быть обеспечена высокая жесткость, вне зависимости от показателей длины.
  2. Высокое сопротивление нагреву в ходе рабочего процесса.
  3. Низкое влияние на погрешность станка.
  4. Низкий коэффициент трения.
  5. Минимальная потребность в смазочных материалах.
  6. Сопротивляемость износу.
  7. Наличие защиты от повреждений других элементов в результате выхода из строя одного из них.

Виды направляющих для ЧПУ станков

С конструктивной точки зрения все линейные направляющие можно разделить на те, которые используют силы скольжения и силы качения. Обе эти технологии на практике воплощены в следующих видах направляющих для ЧПУ станка:

  1. Круглые направляющие . Это более простая конструкция, но обеспечивающая меньшие нагрузки. В процессе работы и повышения нагрузки сильно повышается нагрев в результате трения, вследствие чего уменьшается ресурс всей опорно-направляющей группы. Подшипники круглых направляющих традиционно не имеют собственной системы внутренней смазки. Для обеспечения стабильной работы использование таких изделий на фрезерных станках высокой мощности не целесообразно. Круглые направляющие для ЧПУ систем лучше устанавливать в местах не слишком активных перемещений или на станках «малой» категории, смазывая механизмы вручную.
  2. Рельсовые или прямоугольные направляющие конструктивно более совершенны. При наличии собственного пыльника, защищающего подшипники, ниппели, сальники, а также возможности подключения системы подачи смазочных материалов, такие направляющие более надежды и универсальны. При работе наблюдаются меньшие потери на трение и отсутствие больших погрешностей. Правда, стоимость таких направляющих выше.

Рельсовый тип направляющих считается более предпочтительным, так как способен справляться с повышенными нагрузками скоростных промышленных автоматических станков. Принцип работы фрезерного станка с такими направляющими следующий: направляющие крепятся на станину, а на каретки, в которые заключены шарики или ролики для обеспечения качения, закрепляются подвижные части станка. Движение вдоль стола по оси Y создает портал с кареткой шпинделя. Для перпендикулярного движения по оси X задействуется каретка шпинделя, которая передвигается по порталу. Когда необходимо движение по оси Z, передвигается сам шпиндель по траектории действия направляющих. Таким образом обеспечивается высокая точность и скорость фрезеровки в абсолютно любом направлении.

Цилиндрические направляющие для ЧПУ на рельсах

В цилиндрических направляющих для ЧПУ станков используется специальная опора – рельса с округлой выемкой, повторяющей размеры вала. Это предупреждает прогиб направляющей под воздействием собственного веса и нагрузки во время работы механизма. Сами рельсы вплотную крепятся на станине, обеспечивая жесткость. Вал плотно прилегает к опоре и во время движения движется строго в ограниченной области.

Несмотря на улучшенную конструкцию, цилиндрические валы на опоре имеют схожие с полированными валами недостатки. У втулок может наблюдаться достаточно высокий люфт и быстрый износ, хотя общая грузоподъемность такой направляющей значительно выше.

Сложность лишь возникает при выборе подходящей каретки. Вся суть в том, что линейные подшипники на полированные валы полностью огибают вал по всему контуру, что невозможно на цилиндрических рельсах, где каретки примыкают только в определенном диапазоне, так как вал должен опираться на рельсу. В результате слишком тяжелый шпиндель может понизить точность станка. При таких условиях обычный вал действует точнее. Потому выбор каретки при оснащении станка цилиндрическими направляющими на рельсах очень важен.

Цилиндрические направляющие для ЧПУ станков на рельсовых опорах, как и обычные шлифованные валы, очень просты в изготовлении. Потому цена на них всегда ниже, чем при покупке профильных. При одинаковом бюджете вы сможете позволить себе наиболее качественные направляющие.

Профильные рельсовые направляющие для ЧПУ станков

Конструкция с использованием профиля и рельс позволяет добиться высочайшей точности фрезеровки, что определяет сферу их применения. По аналогии с цилиндрическими, профильные направляющие для ЧПУ фрезерных станков крепятся на неподвижную часть. Поверхность рельсы предварительно обрабатывается и тщательно шлифуется во избежание самых мелких коррозий и выемок. За счет наличия боковых выемок в виде обоймы для шариков каретка перемещается вдоль балки. В отличие от круглого вала площадь соприкосновения не точечная, а в виде линии. Это создает определенные преимущества:

  • Уменьшается сила трения.
  • Повышается износостойкость рельсы.
  • Увеличивается точность работы станка.
  • Повышается грузоподъемность и способность выдерживать нагрузки.
  • Обеспечивается минимальный люфт или его полное отсутствие.

Если направляющие для ЧПУ станка устанавливаются для работы при высоких нагрузках, возможна дополнительная подача смазки на блок шариков и физико-химическая обработка деталей. Для профильных направляющих для ЧПУ станков характерна установка защиты от загрязнения внешней среды в виде пыльников и защитного корпуса. Это является необходимой мерой, поскольку пятно контакта шариков с поверхностью рельсы должно быть чистым и ровным, от этого зависит длительность и качество работы механизма.

Профильные направляющие для ЧПУ механизмов более дороги и сложны в производстве. Производить некачественный продукт попросту бессмысленно, потому наше предприятие выставляет самые строгие требования к качеству продукта.

Для каких задач лучше использовать данные виды направляющих для ЧПУ станков?

Учитывая конструктивные особенности и технические характеристики линейных направляющих для ЧПУ станка, можно сделать вывод, что использовать их следует для различных целей:

  • Для решения сложных задач по обработке высокопрочных металлов и натурального камня с планируемой площадью рабочего поля более 0,7 м кв. единственным верным вариантом будет выбрать профильные рельсовые направляющие.
  • Если же в ваших планах – обработка более мягких материалов на небольшом рабочем поле станка (в пределах 20х30 см), то с такой задачей легко справятся цилиндрические валы небольшого диаметра .

Если выбрать направляющие вам все еще сложно, вы можете позвонить в наш инженерно-технический отдел (044) 229-65-57 и наши инженеры помогут вам подобрать прочные и надежные направляющие для ЧПУ техники в зависимости от конструктивных особенностей станка и планов по его эксплуатации.

Если хотите сделать запрос или оформить заказ:

Подберем оптимальное решение по цене и срокам поставки.

Направляющие для станков в Балашихе

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

Читайте также:  Масса должна соответствовать вибродвигателю

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Онлайн консультант”.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен бесплатный номер 8-800.
Для перехода на сайт нажмите “В магазин”

На сайте продавца доступен “Заказ в один клик”.
Для перехода на сайт нажмите “В магазин”

Виды линейных направляющих для фрезерно-гравировальных станков с ЧПУ

Направляющие – важная деталь в устройстве фрезерного станка. Направляющие для ЧПУ своими руками могут выполнить многие мастера, опыт работ в домашних условиях имеется у большинства практикующих специалистов.

Задумав домашнее производство мебели, необходимо соблюдать точность в конструкции. Поэтому многие мастера, осваивающее его нуждаются в качественном оборудовании. Специальный деревообрабатывающий механизм облегчит труд, позволит создавать качественную, продукцию в короткий срок.

Чтобы изделия отличались высокой точностью, но соответствовали современным характеристикам, применяются модели ЧПУ.


Числовое программное управление

Числовое программное управление дает такую возможность, но покупать его под силу не каждому предпринимателю. Именно по этой причине появляется потребность изготовить самодельный агрегат, для устройства которого применяются детали собственного производства.

Основными частями фрезерных станков, предназначенных для обработки того или иного материала, являются направляющие. Они представляют собой шариковые или роликовые подшипники качения, назначением которых является перемещение каретки. Их цель – ускорение, упрощение и придание точности производству.

Какие бывают направляющие

Любой станок базируются на точности обработки, которую обеспечивают направляющие стержни. Своими руками приходится изготавливать рабочие узлы, но есть такие, которые самому никак не сделать, годятся только детали заводского изготовления.

К примеру, рабочий орган фрезерного станка изготовить едва ли получится, как и со сверлильным или токарным. Поэтому приходится использовать готовые решения — дрели, приводы, граверы или электрические лобзики. С направляющими дело обстоит попроще, поскольку их характеристики и вид прямо зависит от предназначения агрегата.

Практически все они, применяемые в заводских и самодельных конструкциях бывают всего двух типов — скольжения и качения. По принципу подшипников, их метод работы понятен — одни основаны на скольжении, вторые используют в своей конструкции подшипники качения.

Для оборудования малой мощности и не требующих точности и производительности, используют принцип скольжения. В основном, такими деталями пользуются настольные сверлильные и токарные агрегаты, а также деревообрабатывающие. Есть еще подвиды, но рассмотрим те, которые проще всего изготовить своими руками из того, что есть в продаже.

Данные статической нагрузки

Цифры ниже – для рельсовых направляющих в состоянии покоя (статическом). Для определения динамических параметров, необходимо использовать расчеты, приведенные ниже.

Направляющие для ЧПУ станка

Обрабатывающие центры с ЧПУ для мелкосерийного и домашнего использования — дорогая штука и не каждый может позволить себе купить форматно-расточной или токарный с ЧПУ, но выполнить своими руками сносное по качеству обработки и чистоте реза устройство, можно запросто. Рассмотрим несколько конструкций, но сначала посмотрим на детали заводского изготовления, чтобы понять основные принципы работы.

Все направляющие для программируемых станков бывают кругового движения или линейного типа, это зависит от траектории, по которой движется подвижный узел в координатах. Будем рассматривать только линейные, как самые востребованные у самодельщиков, да и особой нужды для применения круговых устройств нет.

Необходимый инструментарий

Перед тем, как сделать каретку для циркулярки, которая позволит получать поперечный или угловой распил у мелких деталей с комфортом для пользователя, необходимо запастись следующим инструментарием:

Это — перечень основных материалов и инструментов, которые понадобятся для создания стандартной конструкции, выполняющей прямоугольный пропил. Для пиления под углом 30 или 45 градусов надо будет выпилить «комбинированный квадрат» из доски либо фанеры. Теперь — о последовательности действий.

Читать также: Расчет ленты фундамента калькулятор

Направляющие скольжения

Самый простой вариант для самодельных программируемых устройств любого типа — детали скольжения. В зависимости от требований к производительности их параметры меняются. В основном используют цилиндрические стержни, их предварительно шлифуют, по ним движутся бронзовые втулки. Суппорт выполняется и без втулок, но это, естественно, будет влиять и на ресурс стержней, и на аккуратность обработки заготовок.

В качестве стержней на плоскошлифовальном наждаке, сверлильном или простом токарном, может быть использована оцинкованная труба разного диаметра. Она хороша тем, что стоит дешево, легко поддается обработке и формированию, но есть также и существенные недостатки:

  • труба имеет малый ресурс по сравнению с другими видами, поскольку защитный цинковый слой или слой хрома, который наносится дополнительно, стирается за 15-20 проходок, и тогда начинается интенсивный износ металла;
  • труба не обеспечивает достаточной прочности на изгиб в том случае, если необходимо подвергать заготовку высоким нагрузкам.

Тем не менее во многих маломощных устройствах они используются и если падает точность, труба просто заменяется новой. Более остроумно поступают при изготовлении маленького фрезера на базе устройств скольжения от старых матричных принтеров. Такой вариант показал себя на практике положительно и в них еще поработают не один год. Несколько таких конструкций мы представили на фото. Также есть еще один неплохой вариант, чтобы обойтись малой кровью при постройке программируемого оборудования.

Защита от коррозии и смазка

Чтобы защитить направляющие от воздействия коррозии, их исполняют из нержавеющей стали. Есть вариант с нанесением специального защитного покрытия. Его применение осуществляется при необходимости в высокой степени защиты от коррозии.

Готовые заводские направляющие смазываются пластичной смазкой, выполненной на основе литиевого мыла. После этого они могут использоваться по назначению. Различные условия работы потребуют нужной периодичности добавления смазки такого же типа.

Станки с ЧПУ из мебельных стержней

Прекрасный вариант, когда нужно добиться тщательности обработки, особенно в деревообрабатывающих станках для производства мебели небольшими партиями, в ленточно-шлифовальных, фрезерных на базе готового фрезера малой мощности. Мебельные детали стоят недорого, правда и ресурс у них меньше, чем у аналогичных элементов скольжения от принтеров или печатных машинок.

Пример использования мебельных стержней на форматно-расточном показан на фото. Понятно, что размеры станины и подвижного стола корректируются в зависимости от назначения. Тем не менее, если использовать мебельные шарикового типа на сверлильном , сносу им не будет, поскольку нагрузка и частота у работы у фрезера или сверлильного значительно отличаются от нагрузок на форматно-раскроечном станке.

Выход есть всегда, а по приведенным примерам вполне возможно подобрать направляющие скольжения для своего станка с ЧПУ желаемых параметров. Удачи в работе!

Подготовка к работе

Прежде чем приступить к работе, необходимо определиться с необходимым набором инструмента и материалов, которые понадобятся в процессе работы.

Для работы будут использованы следующие инструменты:

  1. Циркулярная пила или можно использовать распиловочный лобзиковый станок.
  2. Шуруповерт.
  3. Шлифовальный станок.
  4. Болгарка (Угло-шлифовальная машинка).
  5. Электролобзик.
  6. Ручной инструмент: молоток, карандаш, угольник.

В процессе работы также понадобятся следующие материалы:

  1. ЛДСП.
  2. Фанера.
  3. Массив сосны.
  4. Стальная трубка с внутренним диаметром 6-10 мм.
  5. Стальной стержень с наружным диаметром 6-10 мм.
  6. Две шайбы с увеличенной площадью и внутренним диаметром 6-10 мм.
  7. Саморезы.
  8. Столярный клей.

Шина из алюминиевого профиля или рельса

Понадобится:

  • два куска профиля из алюминия;
  • два куска фанеры разной толщины;
  • винты и саморезы с плоскими головками;
  • гайки М3.

Сначала к отрезку тонкого фанерного листа винтами крепится отрезок профиля более крупного сечения. По его сторонам саморезами прикручивают полосы из толстой фанеры, излишки которых обрезают по ширине.

Далее к работе готовится пила. Для этого в большой профиль нужно поместить профиль, имеющий меньшее сечение. Необходимо следить за тем, чтобы он двигался свободно, не стопорился головками болтов. Затем винтами-барашками он прикрепляется на подошву циркулярки параллельно распилочному диску. Оба профиля должны иметь форму буквы П. Пила закрепляется на шине, которая кромкой накладывается на разметку заготовки, и с помощью струбцинов фиксируется. Механизм готов к работе.

Такая направляющая имеет легкую подачу, плавный ход и большую точность распиловки, что является ее преимуществом, несмотря на относительную сложность изготовления.

Описанные конструкции самодельных направляющих шин для циркулярок получили самое большое распространение. Очевидно, имеются и другие варианты таких приспособлений, которые можно сделать в домашних условиях. Обойдутся они при этом значительно дешевле, чем сделанные на заводе, не уступая им по эффективности. К тому же их можно применить при работе не только с циркулярной пилой, но и с ручной фрезой, и электролобзиком.

Цилиндрические валы

Конструкция цилиндрических валов позволяет удерживать уровень по всей длине, полностью исключая провисание под весом каретки или своим собственным. Такие направляющие называются еще линейными опорными валами, фиксируются они прямо к корпусу станка с ЧПУ через предусмотренные в опорах резьбовые отверстия. По таким направляющим могут двигаться каретки большого веса без провисания.

Минусы цилиндрических валов:

  • малый срок эксплуатации;
  • заметный люфт втулок.

Если подшипники линейного типа одинаково работают с нагрузками разного направления, то на цилиндрических валах каретки показывают меньшую стабильность. Это объясняется замкнутой поверхностью втулок, которой не обладают каретки. Поэтому следует быть готовым к тому, что аппарат с ЧПУ малого размера с увесистой кареткой на опорных валах будет работать с большей погрешностью, нежели такой же станок с ЧПУ на обычных круглых рельсах.

Технология изготовления цилиндрических рельс очень проста, поэтому их производят и известные фирмы, и кустарные мастерские. Этим объясняется разброс технических характеристик и цен. Зачастую каретки и рельсы одного изготовителя «ноу нэйм» не совпадают.

Валы круглого сечения

Наиболее широко применяемый и недорогой тип направляющих это полированные валы. Они просто монтируются, обрабатываются, купить такие детали не проблема. Валы производят из высокопрочной стали, в основном, шарикоподшипниковой, марок ШХ15 СГ, ШХ15, 95Х18-Ш. Они дополнительно подвергаются индукционному закаливанию верхних слоев, после чего полируются. Закалка индукционным методом повышает срок эксплуатации и снижает степень износа. Полированная поверхность позволяет двигаться каретке с минимальным трением за счет идеальной гладкости. Фиксируются валы своими руками, с двух концов, очень просто и быстро.

В продаже множество подделок, выполненных из металла низкого качества. Ведь проверить твердость стали на месте не представляется возможным.

Эта модель направляющих обладает рядом недостатков:

  • нет фиксации на основании. Вал удерживается лишь за счет двух концевых крепежей, что значительно облегчает установку своими руками, но делает направляющие независимыми от столешницы. Это увеличивает вероятность неточностей при обработке, направляющие может повести, со временем они искривляются.
  • провисают на длинных отрезках. В связи с провисанием валы длиннее 100 см в станкостроении не применяют. Следует также учитывать соотношение толщины и длины вала. Оптимальным считается соотношение 0,05, а лучше от 0,06 до 0,1.

Линейные подшипники на круглый вал

Используется два типа линейных подшипников для направляющих:

  • шариковые втулки;
  • подшипники скольжения.

Шариковые втулки или подшипники качения по сравнению с каретками рельс обладают двумя большими недостатками: малая грузоподъемность, большой люфт. Чтобы каретка не разворачивалась, нужно на каждую ось ставить по паре валов. Минусы шариковых подшипников качения:

  • выдерживают малую нагрузку;
  • невысокий ресурс работы — шарик прилегает к валу лишь в единой точке, поэтому здесь образуется высокое давление. Постепенно в месте соприкосновения пробивается канавка и вал необходимо своими руками менять;
  • большой люфт — дешевые подшипники (а их большинство) производятся со значительным люфтом;
  • легко забиваются опилкой и пылью.

Подшипники скольжения. Подшипники этого типа изготавливают из мягких металлов, капролона, они работают по принципу трения скольжения. Если при эксплуатации выдерживаются все допуски, грузоподъемность и точность такого подшипника не меньше, чем качения. Вместе с тем, ему не страшны опилки и пыль. Но это касается лишь бронзовых деталей, грамотно обработанных.

Постепенно изделие изнашивается и его необходимо периодически подгонять, чтобы убрать зазоры. Чаще всего при изготовлении направляющих своими руками, используются более доступные шариковые подшипники.

Низкопрофильные системы линейного перемещения Mini-Rail LPM

Низкопрофильные системы линейного перемещения Mini-Rail LPM

  • Низкий профиль для малых пространств
  • Низкая стоимость полимерной каретки
  • Литые резьбовые вставки из стали
  • Двойной рельсовый путь
  • Идеальны для тяжелых условий работы
  • Доступны в 4 размерах

Полимерная каретка SimGlide-J (класс воспламеняемости UL 94 HB) Литые резьбовые вставки из стали Рельсы из алюминия Литые резьбовые вставки из стали
Рабочая температура:
от минус 35С до плюс 65С
Химическое сопротивление:
Устойчивы к смазкам, горючим материалам, красителям, слабым кислотам
Фактор снижения нагрузки:
0,7-1,0 для низких скоростей; 0,4-0,7 для средних скоростей; 0,1-0,4 для высоких скоростей

Сборка направляющих и кареток для ЧПУ станка своими руками

Собирая станок с ЧПУ своими руками и определяясь с его комплектующими, важно правильно подобрать направляющие и каретки, которые по ним передвигаются. От этого зависит стабильная работа устройства и точность обработки.

Механика каждого станка, независимо от его предназначения и типа, содержит комплектующие, которые относятся к базовым. Поэтому игнорировать их параметры недопустимо. Общепризнанно, что такой важной составляющей для металлорежущих или деревообрабатывающих устройств считаются направляющие. Именно ними определятся безошибочная и цикличная работа.

Поэтому тот, кто решил создать станок, должен позаботиться, чтобы в его конструкции использовались качественные направляющие для ЧПУ, положительно влияющие на функционал устройства. На приобретении комплектующих не экономят.

Основные типы направляющих

В процессе конструирования и монтажа станков (заводского и самодельного изготовления) применяют разные типы направляющих устройства. Это связано с их предназначением – фрезерование, сверление или токарные работы. Они могут быть двух типов.

Направляющие скольжения

Их используют в оборудовании небольшой мощности, не требующем особой точности и высокой производительности. Такими деталями комплектуют сверлильные и токарные агрегаты настольного типа, деревообрабатывающие станки.

Полированный вал, как вид направляющей, относится к бюджетным. Он наиболее распространен.

ВАЖНО! Его изготавливают из высоколегированной стали, выполняют индукционную закалку и, впоследствии, шлифовку. Такая обработка служит для увеличения продолжительности работы, а вал изнашивается меньше.

Полированный вал имеет недостатки:

  • крепление в концевых точках, со станиной нет крепления, из-за чего налицо отсутствие жесткой связи со столом и наличие погрешностей в обработке;
  • провисание при увеличенной длине, поэтому допустим её максимум – 1 метр. Рекомендуют иметь оптимальное соотношение диаметра вала и его длины (0.06-0.1), чтобы достичь нормальных результатов.

Направляющие качения

Они сконструированы при участии подшипников качения.

У линейных подшипников – больший люфт, чем у каретки рельсовых направляющих, он меньше нагружен. Но у него есть ряд минусов:

  • низкий уровень грузоподъемности;
  • недолговечность;
  • изготовление с солидным люфтом;
  • чувствительный к воздействию пыли и стружек на вал.

Материал для производства втулок – бронза, латунь, капролон. Если имеет место соблюдение допусков, бронзовые подшипники скольжения не уступают подшипникам качения. Время от времени, если подшипник скольжения износился, его подгоняют, и чтобы устранить зазоры. Поэтому шариковая втулка более предпочтительна, благодаря тому, что она доступна и взаимозаменяема.

Вал и его виды

Стоит дать краткую характеристику и остальным видам.

  • Шлицевому валу свойственно наличие специальной дорожки для шариков втулки. Отличаясь большей жесткостью и износостойкостью, сравнительно с валом обычного вида, применим в механизмах, в которых желателен монтаж направляющих на концах. В конструкции станков задействованы крайне редко из-за дороговизны.
  • Вал на опоре в виде цилиндрических рельс линейного типа не допускает прогибания под нагрузкой и собственным весом. Его крепят на станине, надежно фиксируя. Несмотря на минусы, выражающиеся в наличии большого люфта втулок, их малом сроке эксплуатации, у цилиндрических рельс – большая грузоподъемность. Отличаясь от линейных подшипников, каретка по-разному реагирует на степень нагрузок. У небольшого станка ЧПУ, имеющего тяжелый шпиндель, есть вероятность того, что снизится точность.

  • Предназначение профильных рельсовых направляющих – большая точность. Они также прикреплены к станине. Благодаря специальным дорожкам качения, нагрузки на каретку распределяются равномерно по поверхности, а профилем касания шарика к рельсе есть дуга. Среди плюсов – наличие хорошей грузоподъемности и износоустойчивости, а люфт сведен к минимуму. Сложности производства таких рельсов, отрицательно сказываются на ценообразовании, они дорогостоящие. Особенно это относится к направляющим, поставляемым известными брендами, у которых станки имеют числовое программное управление.
  • У роликовых рельсов – плоские дорожки качения, а в опорном модуле, на месте шариков, установлены ролики, улучшающие все параметры направляющей. Их применяют в станках, фрезерующих черные металлы, сталь и камень.
  • «Ласточкин хвост» выбирают для промышленного металлообрабатывающего оборудования, если нужна повышенная жесткость крепления. В направляющих этого типа – скольжение плоских поверхностей при максимальной площади контакта. Их выполняют в виде монолита со станиной. Вследствие сложности и трудоемкости процесса изготовления и ремонта, поэтому хоббийное станкостроение не приемлет эти направляющие.

Каким конструкциям отдать предпочтение

Не все могут позволить себе приобрести, скажем, обрабатывающий центр с ЧПУ для изготовления мелкосерийных деталей в домашних условиях, станок форматного типа или для токарных работ. Но самодельный агрегат с ЧПУ, сделанный собственноручно – реально. Собранное устройство в умелых руках продемонстрирует образцы правильной обработки деталей.

Собирая механику программируемых станков, обычно применяют самодельные линейные направляющие, так как в устройствах с круговым движением нет необходимости. Обратим внимание на некоторые конструкции, применяемые при этом.

Оцинкованные или хромированные трубы

Они идут с различным диаметром можно использовать как стержни при монтаже маломощных устройств – плоскошлифовальных наждаков, сверлильных или токарных станков. По шлифованному цилиндрическому стержню осуществляется движение бронзовой втулки. Иногда суппорт делают и без нее. У труб – невысокая цен, их легко обрабатывать. Хотя есть минус: небольшой ресурс (стирание защитного слоя наступает спустя 15-20 проходок, после чего сталь изнашивается более интенсивно); нет нужного уровня прочности при высоких нагрузках.

Фрезер

Эффективен фрезер, в котором направляющий механизм изготовлен на основе бывшего в употреблении матричного принтера или печатной машинки «Янтарь». При таком варианте прослужит долго. Не нужно искать очень широкие подшипники, их внутренний поперечник должен равняться диаметру болтов.

Мебельные стержни

Проблему механики для станков с ЧПУ можно правильно решить при помощи мебельных стержней. Тем более, что самоделки с их применением гарантируют тщательную обработку на деревообрабатывающем, ленточно-шлифовальном оборудовании, и даже фрезерном с невысокой мощностью. Мебельные комплектующие относятся к дешевым, хотя ресурс у них небольшой.

Полированный вал

Недорогой и часто применяющийся тип направляющей. Сущность обработки – индукционно закалить верхний слой, что способствует повышению длительности эксплуатации и снижению интенсивности процесса изнашивания. Затем вал полируется, и каретка движется при минимальном трении.

Самодельные

Часто практикуется установка самодельных направляющих, используя то, что есть в наличии. Например, можно воспользоваться стальным уголком, подшипниками, гайками и болтами.

ВАЖНО! Не берите алюминиевый, в таком случае надо быть готовым к частой замене детали. Дорожки в ней выедают шарикоподшипники каретки.

Предпочтение лучше отдать стальному уголку. Если использование механизма ожидается интенсивным, лучше его закалить и отшлифовать для снижения трения на подшипниках.

Штоки

Собирая маленький домашний станок, иногда пользуются, как направляющими, – штоками автомобильных стоек из отечественного авто. Они прочны и изготовлены из металла высокого качества. Это ощутимо сократит затрату средств на стоимость комплектующих.

Есть и такой вариант: алюминиевые шины из распредустройства трансформаторной подстанции с впрессованными медно-графитными втулками от стартера МАЗа. А подвижные узлы делают из пневмоклапанов, которые применяются для управления пневмоцилиндрами.

При изготовлении направляющих и кареток для чпу своими руками (роликовых или шариковых), надо пользоваться такими ожидаемыми критериями:

  • сохранение заданных параметров;
  • плавное линейное перемещение кареток;
  • эффективность работы;
  • низкое трение.

ОБРАТИТЕ ВНИМАНИЕ! Некоторые умельцы советуют в механике на станке обойтись без втулок. Такой вариант возможен, но это чревато ухудшением производимых изделий, а сроки эксплуатации установленного устройства из стержней – снизятся.

Заключение

Если установленные комплектующие же умельцем подобраны или обработаны неточно, с таким устройством будут проблемы. Поэтому важно всегда учитывать эти рекомендации:

  • в фрезеровке металлических или каменных заготовок, профильным рельсам нет замены;
  • если строится станок с рабочим полем, превышающим 7 кв. м., лучше подобрать вариант профильных направляющих;
  • в оборудовании по обработке мягких материалов с маленьким рабочим полем, меньшим формата А4, применим полированный вал с диаметром 16-25 мм.

Если направляющая соответствует всем критериям, и каретка по ней движется плавно и равномерно, то и работа такого узла будет правильная.

Добавить комментарий