Соответсвие зернистости и материала

Маркировка заточных кругов

Содержание

  1. Размер круга
  2. Скорость вращения
  3. Форма круга
  4. Вид абразива
  5. Зернистость шлифовального круга
  6. Твердость круга
  7. Структура круга для шлифования
  8. Вид связки
  9. Класс точности
  10. Класс неуравновешенности
  11. Другие обозначения на шлифовальных кругах

Круги для заточных и шлифовальных станков применяются для самых разных работ. Одними снимают краску и ржавчину с металлических заготовок. Другие нужны для заточки ножей, лезвий топоров, пильных цепей и дисков. Третьими проводят финишную обработку поверхности. Как разобраться в многообразии оснастки и выбрать подходящую? Расшифруем условные обозначения и прочитаем маркировку, которую производитель размещает на упаковке или самом изделии.

Как расшифровывается маркировка шлифовальных кругов

На первый взгляд все просто. Нужно посмотреть параметры оборудования, и будет понятно, какая оснастка к нему подходит. Учитывается и вид предстоящих работ. Однако надо иметь в виду, что производители используют две системы маркировки. Одни ориентируются на советский ГОСТ, другие – на современный ГОСТ Р. Мы опишем каждый пункт маркировки шлифовальных кругов отдельно и укажем, как он обозначается в разных ГОСТах.

1. Размер круга

Указывается в названии шлифовального круга и дублируется на упаковке. Например, в названии круг шлифовальный 175х20х32 мм цифры означают следующее: 175 мм – это наружный диаметр, 20 мм – высота круга, 32 мм – внутренний, посадочный диаметр. Станки рассчитаны на работу с кругами определенных размеров. Эти требования, как правило, есть в инструкции к оборудованию, и их нужно учитывать в первую очередь.

2. Скорость вращения

Зависит от прочности круга. Он должен выдержать скорость, которую придаст ему шлифовальный или заточный станок. Если оснастка будет недостаточно прочной, ее износ произойдет быстро, и совсем скоро придется покупать новую. Производители указывают на кругах максимально допустимую скорость вращения оснастки в двух единицах измерения – м/с и об./мин.

Как в маркировке кругов обозначается скорость вращения

3. Форма круга

Определяет характер работы, которую можно выполнять этой оснасткой. Кругом с прямым профилем выправляют лезвия ножей. Круг конического профиля нужен для пильных цепей и дисков. Существуют 14 форм оснастки. По старым стандартам форма круга обозначается буквами и числами, по современным – только числами. Один из вариантов маркировки чаще всего есть в названии. Пример числовой маркировки: круг шлифовальный 1 – изделие, которое имеет прямой профиль.

Формы шлифовальных кругов и их маркировка

4. Вид абразива

Абразивный материал – мельчайшее зерно с острыми кромками, которое снимает с заготовки слой за слоем. От свойств частиц зависит, какой станет поверхность после обработки – гладкой или шероховатой. Основные качества абразивных материалов – это твердость, устойчивость к механическим воздействиям, высоким температурам и химикатам.

Виды абразивов, их свойства и маркировка

У каждого материала есть подвиды, которые отличаются друг от друга по параметрам и в работе проявляют себя по-разному. Например, электрокорунд нормальный состоит из 93 – 96% оксида алюминия, а его разновидность – электрокорунд белый имеет в своем составе до 98 – 99% этого вещества. Поэтому он тверже и обладает повышенной абразивной способностью и хрупкостью. Шлифование такой оснасткой проходит качественнее, прижогов металла меньше. Обозначается этот материал как 22 А или иначе – 23А, 24А или 25А. Чем больше числовое значение, тем прочнее и качественнее зерно.

Маркировка абразивов

5. Зернистость шлифовального круга

Показывает размер абразивов и измеряется в микронах. Чем однороднее частицы по размеру, тем качественнее обрабатывается поверхность. Существуют две системы маркировки шлифовальных кругов по этому параметру. В советском ГОСТ 3647-80 применяется числовая система обозначений. Цифрой 1 обозначается размер зерна в 10 мкм. Если зернистость круга 40, то размер зерен составляет 400 мкм. Новый ГОСТ Р 52381-2005 повторяет систему маркировки FEPA, принятую во всем мире. В ней зернистость обозначается буквой F с числом. Чем выше числовое значение, тем мельче абразивные частицы. Например, маркировка F70 означает, что размер зерен составляет 200 – 250 мкм, а F40 говорит о том, что размер равен 400 – 500 мкм.

Обычно зернистость выбирают в зависимости от обрабатываемого материала, нужной шероховатости заготовки, толщины снимаемого слоя. Например, сначала проводят черновую шлифовку кругом с крупной зернистостью, затем оснасткой с мелким зерном проводят чистовую обработку.

6. Твердость круга

Обозначает способность связки сопротивляться выкрашиванию зерен и говорит об износоустойчивости оснастки. Зерно должно полностью выработать свой ресурс и только затем выпасть из связки, открыв следующий слой абразива.

Степень твердости в маркировке шлифовальных кругов

Наиболее распространены круги средней твердости. Но все же выбор зависит от предстоящей задачи: каким оборудованием и какой материал предстоит обрабатывать. Ошибка в выборе скажется на качестве работ. Недостаточно твердая оснастка быстро выработает свой ресурс. Если же твердость будет слишком высока, на обрабатываемой поверхности появятся трещины или прижоги.

7. Структура круга для шлифования

Показывает пропорции смешивания абразива и связки. Чем больше зерен, тем выше плотность. Чем больше связки, тем больше пространства между абразивными кристаллами и тем более пористой будет структура круга.

Типы структуры круга в маркировке

Выбор оснастки по этому параметру зависит от материала, который предстоит обрабатывать. Оснасткой с плотной структурой шлифуют твердые материалы и проводят абразивную обрезку. Кругами с высокопористой структурой обрабатывают цветные металлы и сплавы с высокой вязкостью.

8. Вид связки

Связка бывает бакелитовой, керамической и вулканитовой. Состав связки влияет на характеристики и сферу применения шлифовальной оснастки.

Виды и свойства связок

Обозначение связки в маркировке шлифовальных кругов

9. Класс точности

Показывает степень соответствия оснастки заявленной геометрической форме и размерам. Здесь же оценивается однородность абразивных зерен, их сорт и уравновешенность рабочей поверхности. Существуют три класса точности, которые указываются в маркировке шлифовальных кругов.

АА – высокоточные круги для многорукавных станков и автоматизированных линий.

А – точно выполненная оснастка для работы с большинством оборудования, например, в цехах или крупных мастерских.

Б – наименее качественная оснастка для бытовых и полупрофессиональных станков.

10. Класс неуравновешенности

От выверенности геометрической формы зависит сбалансированность круга. Если зерно и связка тщательно перемешаны и равномерно распределены по рабочей поверхности, то на ней не будет слишком тяжелых или слишком легких участков. Соответственно, вращаться круг будет равномерно, качество обработки поверхности окажется выше. Существуют четыре класса неуравновешенности, где к первому классу относятся наиболее уравновешенные круги. Кроме качества обработки этот параметр влияет на срок службы оборудования. Чем лучше оснастка, тем меньше изнашиваются узлы станка.

Соотношение классов точности и неуравновешенности

11. Другие обозначения на шлифовальных кругах

На оснастке часто размещают изображения с требованиями техники безопасности.

Расшифровка пиктограмм

Как видите, маркировка шлифовальных кругов дает исчерпывающую информацию о работе с ними. Примените новые знания на практике.

Как читать маркировку

Теперь вы знаете, как читать маркировку шлифовального круга, чтобы получить всю информацию о нем. Но если вопросы все же остались, перед покупкой оснастки проконсультируйтесь с менеджером ВсеИнструменты.ру по телефону 8 800 550-37-51. Он поможет вам сделать правильный выбор. Заказывайте подходящую оснастку прямо сейчас!

Маркировка наждачной бумаги: виды абразива, зернистость

Самым востребованным абразивным материалом не только в домашнем хозяйстве, но и на крупных предприятиях является наждачная бумага. В зависимости от обрабатываемого материала и требований, предъявляемых к поверхности, в каждом конкретном случае используется соответствующая модификация.

Хотя, само по себе, полотно и не отличается сложностью изготовления и содержит всего два основных компонента, разобраться в маркировке наждачной бумаги не всегда просто. Это связано с тем, что не существует единого стандарта даже на территории РФ, не говоря уже о СНГ и мировых производителях. Несмотря на это, для правильного выбора, необходимого уметь расшифровывать обозначения наждачной бумаги.

В настоящее время для изготовления шлифовальных материалов используется самый широкий спектр абразивных компонентов. Кроме этого, существует несколько вариантов основы. Ниже рассмотрим по каким критериям необходимо выбирать наждачную бумагу для того или иного вида работ.

Что такое наждачная бумага и как ее еще называют

Наждачная бумага представляет собой абразивную крошку той или иной фракции, закрепленную на бумажной или тканевой основе с помощью специальных мастик или других клеящих веществ.

Реже можно встретить и другие названия: шкурка, наждак, шкурка шлифовальная, шлифовальная бумага и т.д., однако суть от этого нисколько не меняется.

Зернистость наждачной бумаги

В зависимости от фракции абразивной крошки, материала основы и назначения, весь спектр выпускаемого абразивного полотна можно разделить на несколько модификаций.

По величине зерна различают следующие виды шлифовальных полотен: мелкозернистые и крупнозернистые. В таблице приведены показатели зернистости наиболее часто используемой наждачной бумаги:

Начальное шлифованиеисправление незначительных дефектов поверхности

ГОСТ Р 52381-05

ГОСТ 3647-80

Зернистость, мкм

Сфера применения

Крупнозернистая

Черновая обработка древесины

Исправление незначительных дефектов поверхности

Обработка твердых пород дерева перед окончательной шлифовкой

Шлифовка мягкого дерева

Удаление старой краски

Мелкозернистая наждачная бумага

Финишное шлифование твердых пород дерева

Шлифование под окраску

Шлифование керамики, пластика и металлов

Полировка, снятие глянца

Как видно из таблицы зернистости, область применения наждачной бумаги довольно широка:

  • Столярная и мебельная отрасли;
  • Машиностроение и промышленное производство;
  • Изготовление нестандартного оборудования и приборостроение;
  • Ремонт и покраска автомобилей;
  • Строительно-отделочные работы.

Это далеко неполный перечень, а способы использования наждачной шкурки в быту и вовсе не поддаются описанию по причине своего бесконечного многообразия.

Наиболее распространенными являются три формы выпускаемых наждачных полотен:

Что касается формы выпуска, наиболее распространенными являются листовая и рулонная. Кроме этого Существуют готовые кольцевые модификации для циклевочных и ручных шлифовальных машин, дисковые накладки для электродрелей и некоторые другие разновидности.

Маркировка наждачной бумаги в зависимости от ее назначения: таблица

В зависимости от специфики работ крупнозернистая наждачная бумага подразделяется на несколько основных групп:

Подготовительные работы: удаление ржавчины

Устранение крупных дефектов поверхности

Грубая обработка поверхностей

Р80; Р90; Р100; Р120

20-Н; 16-Н; 12-Н; 10-Н

Окончательная шлифовка и доводка

Мелкозернистая наждачная бумага так же маркируется в соответствии с особенностями использования:

Шлифование твердых пород древесины

Полирование подготовка поверхности под покраску

Шлифовка керамических поверхностей, пластиков и металлов

Р1200; Р1500; Р2000; Р2500

Полирование и снятие глянца

М14; М10; М7; М5; Н-0;Н-00; Н-01

При покупке наждачной бумаги на оборотной стороне можно обнаружить и другие обозначения. Каждое из них несет определенную смысловую нагрузку, например, разновидность абразивного порошка, способ его крепления, особенности клеевой смеси и тип основы и ее механические свойства. Рассмотрим основные обозначения.

  1. Наименование «Р» свидетельствует об абразивной структуре материала;
  2. Буква «Л» обозначает форму выпуска, в данном случае – листовая;
  3. Цифры «1» и «2» говорят о назначении абразивного полотна: 1 – для шлифования мягких поверхностей, 2 – металла и других твердых и особо твердых материалов;
  4. Устойчивость к воздействию влаги обозначается символами «Л1», «Л2» или М;
  5. Обозначение «П» свидетельствует о том, что воздействие влаги и сырости крайне нежелательно.

Помимо этих обозначений особое внимание необходимо уделить свойствам самих абразивных частиц.

Виды абразива

Различают несколько наиболее распространенных материалов, служащих сырьем для изготовления абразивного порошка:

Гранат . Этот абразив является натуральным минералом, поэтому экологически абсолютно безопасен для человека. Естественная структура частиц позволяет эффективно использовать такую наждачную шкурку для обработки всех пород древесины.

Карбид кремния отличается высокими показателями твердости и прочности. Применяют такую наждачную бумагу для шлифования металлов, стекловолокна и других материалов, отличающихся повышенной твердостью.

Абразив на основе керамики используют для формирования поверхности и устранения крупных дефектов при первичной обработке древесины, шлифовке паркета и т.д.

Оксид алюминия достаточно хрупок, поэтому в процессе шлифования кристаллы могут крошиться, образовывая вместо затупленных новые режущие грани. Эта особенность значительно продлевает срок службы абразивного полотна.

Существуют и другие наполнители, однако встречаются они довольно редко и используются для специальной обработки.

Учитывая доступность и невысокую стоимость наждачной бумаги, можно с уверенностью сказать, что никакая конкуренция в ближайшее время ему не угрожает. Универсальность и простота обработки, а также многообразие обрабатываемых материалов делают абразивное полотно незаменимым как в быту, так и в промышленных условиях.

Зернистость – с чем ее едят?

Введение

Наверняка вы знаете о существовании разных классификаций зернистости абразивов: в Европе – FEPA, в Японии – JIS, в России – ГОСТ. Разные производители пользуются разными системами, что вносит сложность в идентификации зернистости.

Вопрос на засыпку (попробуйте ответить на него сами или задайте его опытному заточнику, если вы пока не разбираетесь в предмете). Есть алмазная гранула размером 9 мкм. Какова ее зернистость в разных классификациях зернистости?

Скорее всего вы (или ваш визави) откроете одну из многочисленных сводных таблиц, чтобы найти однозначный ответ. И в этом случае ваш ответ будет неверным, вне зависимости от того, какие значения вы назовете. Потому что заданный вопрос просто не имел смысла.

Зернистость во всех существующих классификациях определяет статистический состав абразива как конгломерата огромного количества частиц. С отдельными частицами классификации не работают. Нельзя присвоить зернистость отдельно взятой частице, потому что частица одного размера может входить в совершенно разные фракции абразива. (Частица 9 мкм из нашего примера может входить в 4 фракции по ГОСТ 9206-80, и в целых 8 фракций по JIS!)

Что такое зернистость

Человек всегда будет стремиться свести любую сложную проблему к одному числу, и зернистость – не исключение. Вне всяких сомнений, присвоить любому точильному камню одно единственное число – зернистость – является очень соблазнительной идеей, так как задача сравнения становится тривиальной. Жонглируя значениями зернистости, вы должны отчетливо понимать – что стоит за цифрами. Пользуясь таблицами преобразования – знать фундаментальные недостатки и ограничения каждой классификации.

Основные классификации зернистостей объемных абразивов, которыми пользуются в деле заточки:

  • FEPA-F – европейская классификация, которой также пользуются в США
  • JIS – японская классификация
  • ГОСТ 9206-80 – российская классификация алмазных абразивов
  • ГОСТ 3647-80 – российская классификация не-алмазных абразивов

Каждая из этих классификаций дает определение своего набора зернистостей. Зернистость – величина дискретная (не непрерывная). К примеру, FEPA-F дает определение зернистости 800 и 1000, а зернистостей 801 или 900 не существует.

Любой абразив (неважно – твердый, паста или порошок) состоит из громадного числа частиц. В мире пони и бабочек (в котором живут многие маркетологи компаний-производителей) все частицы имеют одинаковый размер. В реальном мире абразивные частицы не могут иметь одинаковый размер, одни будут больше, другие – меньше. Даже если производитель тщательно сортирует абразивные частицы по размеру, всегда будет определенный диапазон размеров. Как классифицировать абразивный порошок, состоящий из миллиарда частиц разного размера?

Классификации вносят элемент порядка в хаотический мир статистики. Зернистость определяется как интегральная функция предельного распределения размера зерен. Поясняющая картинка – зернистость грубых абразивов (макрогриты) в классификации FEPA-F (мы используем логарифмическую шкалу на всех графиках). Большая часть исследуемого абразива должна находиться внутри указанного диапазона. Особо подчеркну – среднее значение размера зерен не совпадает с центром диапазона, а просто находится внутри.

Примерим на себя роль лаборанта, который должен определить зернистость FEPA-F абразивного порошка. Мы последовательно берем пары эталонных сит – крупнозернистое сверху и мелкозернистое снизу. И сыпем порошок сверху. Если большая часть порошка проходит сквозь верхнее сито и застревает в нижнем сите – значит образец удовлетворяет зернистости. При этом возможны три случая:

  1. Если абразив плохой (слишком большое распределение размеров зерен), он может вообще не удовлетворять ни одной зернистости.
  2. Нормальный абразив удовлетворяет лишь одной зернистости.
  3. Сверхкачественный абразив (с узким распределением размера зерен) может удовлетворять двум или более зернистостям. К примеру, зерно 100±5 мкм можно классифицировать одновременно как F 150 и F 120.

И это – общая проблема при пользовании таблиц зернистостей. Зернистость по одной классификации никогда не совпадает с какой-либо зернистостью другой классификации. Если производитель декларирует соответствие бруска какой-либо зернистости, без тщательного лабораторного анализа невозможно определить соответствие бруска зернистости в другой классификации. Можно лишь делать допущения и упрощения.

Читайте также:  Получение на выходе кратковременного импульса не менее 1000 а

Что такое фракция

Вы спросите – неужели нарисованные на графике прямоугольники FEPA так сильно отличаются от аналогичных для других классификаций? Все дело в том, что мы сильно упрощаем суть, так как говорим лишь об основной фракции. Основная фракция – это лишь половина абразивных частиц (размер которых ближе всего к среднему значению). Вторая половина (ее называют смежной фракцией) может находиться за пределами описанного диапазона. Смежная фракция может оказывать существенное влияние на чистоту абразива в целом.

Например, абразив J 2500 (JIS) имеет основную фракцию в диапазоне 5-6 мкм, а зерна смежной фракции могут достигать 14 мкм, что почти втрое крупнее. Если вы взглянете на таблицу преобразования в конце статьи, то увидите, что J 2500 соответствует ГОСТ 7/5. Но ГОСТ 9206-80 запрещает наличие крупных зерен смежной фракции. Поэтому транслировать J 2500 в ГОСТ 7/5 по меньшей мере самонадеянно.

Но и это еще не все! Основная фракция – около 50% частиц, смежная – еще около 40%. Остается еще 9-10% частиц, размер которых может выходить за диапазон смежной фракции. Это называется предельной фракцией. К примеру, абразив с зернистостью J 240 имеет основную фракцию 57±3 мкм, а зерна предельной фракции могут достигать размера 127 мкм! И это не какой-то брак, это такой стандарт.

Разумеется, не стоит кидаться в крайности и считать, что раз стандарт допускает разброс, безобразный с точки зрения заточки ножей, то производители этим пользуются и халтурят. Реальные абразивные бруски скорее всего будут иметь адекватное распределение размера зерен. Но не зная этого наверняка, не стоит делать допущений.

Пройдемся по основным классификациям.

FEPA (The Federation of the European Producers of Abrasives, http://www.fepa-abrasives.org/) регулирует стандарты абразивов для Европы. Несмотря на наличие своего национального стандарта ANSI, производители США повсеместно используют стандарты FEPA для обозначения зернистости. Актуальные стандарты: 42-1:2006, 42-2:2006 для объемных абразивов и 43-1:2006, 43-2:2006 для поверхностных абразивов. Отсутствуют в свободном доступе.

Исторически сложилось, что значение зернистости объяснялось как количество частиц в единице объема для объемных абразивов. Так как у поверхностных абразивов объема нет, то для них зернистость объяснялась как количество частиц на единице площади. Этот не очень продуманный подход привел к тому, что один и тот же абразив имеет разную зернистость в точильном камне и на наждачной бумаге. Чтобы не путаться, для объемных абразивов используют обозначение “F” (классификацию называют FEPA-F), для поверхностных абразивов – обозначение “P” (FEPA-P).

Каждый из двух стандартов в свою очередь разделяется на два подстандарта: для макрогритов (грубых зернистостей) и микрогритов (мелкодисперсных зернистостей). Они имеют несколько разные требования к составу фракций.

JIS (Japanese Industrial Standards) регулирует стандарты абразивов Японии. Актуальный стандарт для объемного абразива: JIS R 6001:1998. Отсутствует в свободном доступе.

В этой статье анализируются только микрогриты для JIS. (Информации по макрогритам JIS не было найдено.)

ГОСТ регулирует стандарты абразивов РФ и некоторых стран бывшего СССР. Все стандарты ГОСТ есть в свободном доступе.

Актуальные стандарты, регулирующие зернистость:

  • ГОСТ 9206-80 для алмазных абразивов
  • ГОСТ 3647-80 для не-алмазных абразивов

ГОСТ называет макрогриты шлифзерном и шлифпорошком, микрогриты – микрошлифпорошком.

ГОСТ 9206-80 (для алмазов) используют интуитивно понятное именование зернистостей – в ней указывается диапазон основной фракции. Но в этом скрывается подвох, так как есть еще смежная и предельная фракции (поэтому алмазный порошок 2/1 может включать зерна от 0 до 3 мкм.)

Одна из прелестных черт классификации ГОСТ 9206-80 – это простая система диапазонов для всех фракций: основной, смежной и предельной. Надо лишь запомнить микронную лестницу – последовательность 1 – 2 – 3 – 5 – 7 – 10 – 14 – 20 – 28 – 40 – 60 для микрогритов, и аналогичную для макрогритов. Соседняя пара чисел будет основной фракцией для одноименной зернистости (к примеру 7/5 – основная фракция от 5 до 7 мкм). Смежная фракция – на одну ступеньку вниз (от 3 до 5 мкм). Предельная фракция – еще на одну ступеньку вниз и на одну – вверх (от 7 до 10 мкм, плюс от 2 до 3 мкм).

Для макрогритов смежная фракция – на одну ступеньку вверх и вниз. (Предельной фракции нет.)

В ГОСТ 9206-80 есть еще классификация субмикронных фракций, но мы ее не будем затрагивать в виду малого использования.

Если вы сравните размер полосок основной фракции ГОСТ 9206-80 с FEPA и JIS, вы обратите внимание на их сравнительно большой размер. Но не стоит ругать советский стандарт. В отличии от FEPA и JIS, основная фракция ГОСТ – это от 70% до 80% среднестатистических зерен (в отличии от 50% в FEPA, JIS и даже ГОСТ 3647-80).

ГОСТ 3647-80 (для не-алмазов) использует почти такую же микронную лестницу, но другую систему именования. Для макрогритов зернистость обозначается числом, для микрогритов – числом с индексом «М». При этом разработчики стандарта своеобразным образом «сплавили» макрогриты и микрогриты: зернистость 5 = М63, зернистость 4 = М50 (они полностью эквивалентны за исключением верхней предельной фракции).

Сводный график

Сведем все полученные данные в один график. Вертикальная шкала – размер зерна в логарифмической шкале, на которой горизонтальными линиями отмечены 0, 1, 10 и 100 мкм.

Теперь, приложив немного усилий, вы сможете ответить на некоторые вопросы, которые раньше ставили вас в тупик. Иногда вы видите явное несоответствие каких-либо данных “общепризнанным” таблицам зернистости.

Например, бруски Boride серии Golden Star имеют две маркировки – FEPA-F и JIS. На бруске зернистости F 800 отпечатано “J-1500”.

Но если вы посмотрите любую таблицу преобразования, то напротив F 800 будет другая зернистость – J 2000. Boride ошиблись? Если абстрагироваться от дискретных значений в таблице и переключиться на график с диапазонами, то все встает на свои места. Boride делает бруски из отборных зерен, и реальный диапазон может быть очень узким. Легко представить где на графике должны быть зерна Golden Star 800, чтобы удовлетворять условиям F 800 / J 1500.

Нерегулируемые зернистости

Как вы, наверное, догадались, все описанные стандарты создавались с большим запасом. Необработанный песок, который черпает ковшом из карьера экскаватор, наверняка подходит под одну из зернистостей. И тем не менее, очень часто производители абразивов сталкиваются с тем, что их продукт не вписывается ни в одну стандартную зернистость. В этом случае вступают в дело маркетологи! И они начинают изобретать свои собственные зернистости.

Boride изобрела несуществующую зернистость F 900, базируясь на среднем размере зерна. Не исключено, что абразивы с маркировкой F 900 не удовлетворяют стандарту FEPA-F для соседних зернистостей: F 800 и F 1000. Eze-Lap изобрела несуществующую зернистость F 250 для своих грубых алмазов.

JIS заканчивает свое существование на отметке 8000 грит. Но уже начиная с 4000 грит начинается настоящая вакханалия. Производители японских водных камней и примкнувший к ним Norton предлагают собственные “продолжения шкалы JIS”. Разумеется, каждый гнет свою линию, не оглядываясь на других. 5000, 10000, 15000, вот уже 30000 грит. Что означает та или иная зернистость в этом диапазоне, могут дать лишь данные о размере зерна.

Таблица зернистости

Если вы прочитали все вышесказанное, вы должны понимать необходимость таблиц преобразования с одной стороны, и огромные ограничения их использования с другой. Подавляющее большинство известных производителей абразивов не пользуются никакими стандартами классификаций вообще, либо отходят от них для некоторых продуктов. Но каждая надпись в приведенной таблице – это не точка, а размытое пятно. Пятно может быть маленьким, может быть большим (в зависимости от строгости отбора зерен для конкретного абразива). Если вы конвертируете одну зернистость в другую, не забывайте произносить слово “примерно”.

Таблица разделена на серии с соответствующими заголовками. Вертикальная позиция метки – это средний размер зерна в микронах.

Некоторые колонки включают две серии (для компактности), например, в одной колонке вы найдете шкалу “ASTM Sieve” и серию Chosera. В этом случае метки двух серий различаются цветовым оформлением.

Черно-оранжевые вертикальные полосы демонстрируют удвоение размера зерна. Часто считается, что комплект абразивных брусков должен иметь зернистости с логарифмической прогрессией. Так как наша таблица имеет логарифмическую шкалу, то зернистости в наборе должны быть равноудалены друг от друга.

В некоторых колонках вы увидите метки, выделенные красным цветом. Это отмечены серии, которые не имеют своих отдельных колонок.

Цветные метки соответствуют продуктам, имеющим такой же цвет в реальности, например бруски Chosera и алмазы DMT. Цвет алмазных паст, указанный в колонке “ Compound”, стал стандартом де факто, ей пользуются компании Advanced Abrasives Corporation, Amplex Superabrasives, BORIDE Engineered Abrasives, Engis®, Norton, PPT Pro Polishing Tools, United States Products Co. Российские алмазные пасты выпускаются в других цветах по требованию ГОСТ.

Фиолетовым цветом отмечены метки, которые были смещены по вертикали для того, чтобы избежать наложения друг на друга. Бруски Shapton 8K и 10K, 15K и 16К были смещены по вертикали на 2%. Micro-Mesh™ MXD 600, 800 и 1200 были смещены на 4.5% (они практически идентичны друг другу по зерну). В одном случае два бруска совпадают по зернистости: Norton Hard Arkansas и Spyderco Fine. Соответствующие метки надо читать как “Spyder Fine” и “Hard Ark”, находящиеся в одной колонке в одной точке.

Алюмокерамика Spyderco, Wicked Edge, BRKT, а также арканзасы соответствуют «ожидаемой зернистости», то есть по результатам тестов, а не анализа физической структуры.

Продукты с недоказанной зернистостью отмечены серым цветом.

Для стандартных классификаций использовался средний размер зерна основной фракции.

Для продуктов, использующих средний размер зерна в микронах, использовался этот самый размер.

Один пиксел соответствует изменению размера на 1%. Поскольку из статьи вы знаете, что средняя фракция стандартных классификаций имеет существенно больший разброс, положение меток имеет достаточную точность для сравнения.

В колонке “Other” (другие) вы найдете пункт “Table Salt” (поваренная соль). Это шутка автора таблицы.

Таблица зернистости

Зернистость абразивных материалов (сырья) – основной параметр, характеризующий крупность их зерен. Она обозначается количеством алмазов, приходящихся на I карат массы (шт./карат), либо номером сита, через которое проходит основная фракция сырья.

Все искусственные абразивные материалы, полученные в результате синтеза при плавке, и природные, добытые из недр, подвергают сортировке и последующей переработке, включающей дробление, измельчение, обогащение, классификацию и т. п., для получения абразивов определенной зернистости.

  1. Таблица зернистости алмазных шлифпорошков по ГОСТ 9206—80 (размеры в мкм)
  2. Таблица зернистости природных и искусственных абразивных шлифзерна и шлифпорошков по ГОСТ 3647—80 (размеры в мкм)
  3. Таблица зернистости и содержания основной фракции абразивных материалов по стандарту FEPA (32G9 В 1971)
  4. Таблица зернистости алмазных шлифпорошков по зарубежным стандартам (каталог фирмы «Диамонд Сервис», Италия, 1984)
Таблица зернистости алмазных шлифпорошков по ГОСТ 9206—80 (размеры в мкм)

Зерновой состав алмазных порошков (природных и синтетических) регламентирован указанным выше стандартом, в соответствии с которым они в зависимости от размера зерен и метода получения подразделены на три Группы: шлифпорошки – с размером зерен от 3000 до 40 мкм, микропорошки – с размером зерен от 80 до I мкм и мельче, субмикропорошки – с размером зерен от I до 0,1 мкм и мельче. В камнеобрабатывающем инструменте используются алмазные порошки двух первых групп.

Зернистость алмазных шлифпорошков определяют по основной фракции, преобладающей в массе, и обозначают дробью, числитель которой соответствует размеру стороны ячейки верхнего сита, а знаменатель – нижнего сита (на котором данная фракция задержалась при просеивании). При этом алмазные шлифпорошки выпускают двух диапазонов зернистости: широкого и узкого.

Для камнеобрабатывающего инструмента в основном используются алмазные порошки узкого диапазона зернистости.

В алмазном инструменте для распиловки – окантовки – фрезеровки камня (штрипсовые и дисковые пилы, отрезные круги, фрезы) зернистость применяемых порошков в зависимости от назначения и конструкции инструмента должна быть 1250/10004-250/200. Зернистость алмазного инструмента для шлифовки камня на разных операциях выбирается в пределах 800/630—50/40. Требования к зернистости алмазных шлифпорошков приведены в табл. 28.

Зернистость алмазных микропорошков определяют размерами зерен основной фракции и обозначают дробью, числитель которой соответствует наибольшему, а знаменатель – наименьшему размеру зерен основной фракции (в мкм). Таким образом, могут быть выделены следующие группы микропорошков по зернистости: 60/40 (размер основной фракции – 60—40 мкм), 40/28. 28/20, 20/14, 14/10, 10/7, 7/5, 5/3, 3/2, 2/1, 1/0 (I мкм и менее). В камнеобрабатывающем инструменте алмазные микропорошки в пределах зернистости 60 / 40 – 20/14 используются, как правило, на операциях доводочной шлифовки и полировки.

Зерновой состав большинства искусственных и природных абразивных (неалмазных) материалов регламентирован ГОСТ 3617—80 «Материалы шлифовальные». Указанные материалы в зависимости от размера зерен подразделяют на четыре группы:

  • I – шлифзерно (размер зерен 2000—160 мкм);
  • II – шлифпорошки (125 – 40 мкм);
  • III – микрошлифпорошки (63 – 14 мкм);
  • IV – тонкие микропорошки (10 – 5 мкм).

Зернистость абразивных шлифзерна и шлифпорошков обозначают как 1/10 размера стороны ячейки сита в свету, на котором задерживаются зерна основной фракции (табл. 29).

Зернистость микропорошков и микрошлифпорошков обозначают по верхнему пределу размера зерен основной фракции с добавлением буквы М. Выделяются следующие группы микропорошков и микро шлифпорошков по зернистости: М63 (раз: мер зерен основной фракции 63—50 мкм), М50 (50—40 мкм), М40 (40—28 мкм), М28 (28—20 мкм), М20 (20—14 мкм), М14 (14—10 мкм), М10 (10—7 мкм), М7 (7—5 мкм) и М5 (5—3 мкм). При обработке камня находят применение в основном абразивные шлифпорошки (зернистости 125—4) и микропорошки М63 – М7 (в инструменте для всех операций шлифовки) .

Следует иметь в виду, что стандартами ряда западноевропейских стран и США принято другое обозначение зернистости алмазных и неалмазных абразивных порошков. Несоответствие обозначений размеров зерен в отечественных и зарубежных стандартах объясняется различием принятых в них шкал классификации. Так, в частности, в большинстве капиталистических стран действует дюймовая классификация, опирающаяся на стандарт США. Согласно этой классификации зернистость абразивных материалов обозначается в единицах меш (от английского меш – сито), соответствующих числу отверстий сита на отрезке длиной в I дюйм (25,4 м). Следовательно, большее число единиц меш в обозначении зернистости характеризует более мелкие порошки. С обозначением зернистости алмазов и других абразивов в единицах меш на наших предприятиях встречаются при получении импортного инструмента.

Основные показатели зернового состава абразивных (неалмазных) материалов в меш по стандартам FEPA (европейской организации производителей абразивов) приведены в табл. 30 (стандарты США, Японии и ряда других капиталистических стран в этой таблице не представлены, так как весьма близки к стандартам FEPA), В табл. 31 даны показатели зернового состава алмазных шлифпорошков по стандартам FEPA и США.

Пользуясь данными табл. 29 и 30, несложно перевести зернистость в единицах меш. На зернистость по принятому в ГОСТ 3647—80 обозначению в мкм. Например, из сопоставления указанных таблиц видно, что зернистость 20 меш соответствует зернистости 100 по отечественному стандарту.

Маркировка шлифовальных кругов

  1. Особенности
  2. Марки типов и размеров
  3. Обозначение абразива и зернистости
  4. Твердость и прочие параметры
  5. Советы по выбору кругов

Разбираться в маркировке шлифовальных кругов обязательно нужно каждому покупателю. В этом случае очень выручает таблица зернистости и понимание правил расшифровки обозначений, представление о том, чем хороши те или другие марки. Отдельная обособленная тема – как определить размер зерна наждачного диска, и как все же выбрать подходящий круг для полноценной работы.

Особенности

Официальная маркировка шлифовальных кругов может сказать вдумчивому покупателю о многом, отобрать подходящие и неподходящие для себя решения. В этих скупых с виду обозначениях приведено много ценной информации о характеристиках продукта. Можно понять, где и как его удастся использовать, а какое применение нецелесообразно и порой оказывается даже вредно для заготовок, для самого оборудования. Стандартная система обозначений содержит указания на:

  • ГОСТ или иной стандарт, которому соответствует диск;
  • линейные габариты модели;
  • уровень зернистости;
  • тип примененного вещества;
  • тип связки;
  • предельно допустимую скорость шлифовальной обработки;
  • уровень точности;
  • степень неуравновешенности шлифующего круга;
  • степень твердости вулканитовых и иных абразивных дисков;
  • структуру поверхности инструментального приспособления.
Читайте также:  Банная печь с водяным контуром: положительные и отрицательные стороны

Марки типов и размеров

Один из наиболее массовых вариантов шлифующего круга – это изделия на основе электрокорунда нормального формата. Обозначается он цифрами от 12 до 16 с добавочной последующей буквой А. Преимущества:

  • отличная стойкость к сильному нагреву
  • отменная сцепка с вяжущими компонентами;
  • пригодность для обработки чугуна и кованого железа, обычной и улучшенной добавками хрома стали.

Если тип обозначен как 22А-25А, налицо использование белого электрокорунда. Он однороднее материала предшествующей группы, при этом несколько крепче механически. Эксперты отмечают наличие острых кромок и способность самозатачиваться. После обработки таким диском поверхность будет относительно однородна.

Такие круги часто берут, когда нужно обработать качественную инструментальную сталь, работать с тонкостенными конструкциями.

32А-34А – это марки хромистого электрокорунда. Он пригоден для манипуляций с наплавляемыми поверхностями из специальных марок сталей, оптимизированных легирующими компонентами. Альтернативные названия – технический рубин или же электрорубин. Дополнительно встречаются следующие марки:

  • 37А – электрический корунд с вхождением титана;
  • 38А – циркониевый круг, отличающийся значительной механической крепостью;
  • 52-55С – черный карбид кремния, который тверже обычного карбида, но при этом часто проигрывает из-за хрупкости.

Для алмазных дисков принята следующая маркировка:

  • АС2 – стандартная для такого инструментария крепость;
  • АС4 – прочные изделия;
  • АС6 – еще большая прочность;
  • АС32 – монокристаллические алмазы.

Дополнительно введены еще такие категории в российские стандарты и технические нормативы, как:

  • АС50;
  • АРБ1;
  • АРК4;
  • АРС3.

Износостойкость алмазной массы и ее прочность достигнуты одновременно с уменьшением хрупкости. Такие конструкции пригодны для манипуляций с хрупкими, а также и твердыми материалами. Подобную оснастку, впрочем, могут брать еще для различных действий с оптическим стеклом и для заточки особенно твердых инструментов.

В некоторых ситуациях применяют еще и круговые инструменты категории ПП. Это сокращение обозначает «прямой профиль».

Обозначение абразива и зернистости

Параметры зерна дисков удобнее всего представить и анализировать в формате специальной таблицы. Но тут надо сказать, что в разных градациях эти параметры могут различаться, и порой соответствия найти невозможно. Так, категории обрабатывающих абразивов F4-F7 по шкале FEPA аналогов не имеют. Зерна 3/2 по стандарту за номером 9206 от 1980 года и менее не имеют совпадений в нормативе 3467-80. Вот и сама таблица:

Знак по ГОСТ 3647-80

По ГОСТ 9206 от 1980 года

Габарит в микронах

FEPA абразивные материалы, кроме имеющих гибкую основу (в обозначениях пропущена буква F)

Средняя величина в микронах

Но просто определить значение зернистости наждачных и иных дисков недостаточно. Необходимо еще посмотреть на то, что значит эта классификация в сугубо практическом плане. В порядке убывания размеров выделяют:

  • шлифзерно;
  • шлифпорошок;
  • микропорошки;
  • максимально тонкий микропорошок.

Микропорошки обозначают условным индексом «М». Расшифровать индекс несложно. Цифра после «М» показывает, каковы самые крупные частицы в такого рода продукте. Стоит отметить, что, помимо основной фракции, при каждом номере зернистости четко выделяется еще большая, предельная, мелкая и комплексная фракции.

Сечение абразивной частицы микропорошка диска на липучке – как 40, так и 25А – обычно измеряется по самому большому зерну, которое можно увидеть под микроскопом.

Крупные зерна рассчитаны на грубую доводку покрытий различного типа. Меньшее сечение позволяет выполнять финальный абразивный проход. А также его можно пускать в ход для доводки и затачивания. Крупнозернистыми дисками пользуются, чтобы:

  • обдирать и удалять припуски при значительной глубине прореза;
  • эффективно работать на мощных машинах;
  • шлифовать материалы, закрывающие поры инструментов и провоцирующие «засаливание»;
  • работать на значительных площадях;
  • плоско шлифовать торец;
  • обрабатывать изделия внутри.

Круги с малым и средним зерном нужны, если:

  • актуальна шероховатость покрытий не меньше 0,08 и не больше 0,32 мкм;
  • предстоит работать с закаленной сталью и другими твердыми металлами;
  • шлифовать и доводить приборы (аппараты) до финишной готовности;
  • точно и качественно прорабатывать разнообразные детали.

Твердость и прочие параметры

Круги обычно классифицируют как мягкие, средние и твердые; это основные типы, к которым уже прибавляются различные эпитеты. Например, официально известны:

  • чрезвычайно мягкие;
  • весьма мягкие;
  • среднетвердые диски.

К этим маркам применяют дополнительные цифры от 1 до 3-х. Чтобы затачивать инструмент вручную, нужен абразив С1 либо С2. Необходимо понимать, что твердость абразивных кругов может подразумевать разные вещи. В одном случае это стабильность крепления абразивных зернышек в общей сборке (то есть стойкость связок к выбросу зерен при механическом воздействии). В другом – пригодность используемых частиц для проникновения в другие материалы.

Твердость дисков по первому варианту наращивают, усиливая связку. Суммарный объем пор при этом сокращается, а вот на дистанциях между абразивными частичками это не отражается. Считается, что 1,5% повышения связки добавляет 1 уровень твердости. Продвинутые связующие системы очень стойко переносят разрывы. Они способны работать даже при очень высокой частоте кручения диска – заметно большей, чем может обеспечить наиболее мощная бытовая дрель.

По ГОСТу 1972 года твердость абразивных приспособлений – это именно сопротивляемость выдиранию зерен при внешнем импульсе. Тестирование проводится 3 ключевыми методами:

  • по глубине лунки, выбиваемой струйкой кварцевого песка;
  • по эффективности вдавливания закаленного стального шарика при определенной нагрузке;
  • сверлением лунки на заданную глубину сверлом особой конструкции, на которое оказывается стабильное давление (ключевой показатель – необходимое число витков сверла до достижения результата).

В некоторых случаях профессионалы пользуются устройством ТКН (то есть конусным твердомером). Для работы его действующую часть прогревают до 100 градусов. Потом конус вжимают в круг. Ключевой параметр – глубина вхождения. Твердость диска прямо влияет на процесс шлифовки. Мягкое приспособление пригодно для чистовой обработки довольно твердых материалов. Однако обдирка требует использования более прочных изделий. Сталь, не прошедшую закалку, а также чугун можно обработать кругом умеренной твердости.

Важно: чем тоньше заготовка, тем больше приходится смягчать приспособление. Наряду с этим, играет роль и связочная масса – при одинаковой задаче связующее на базе керамики позволяет использовать не такое твердое изделие, как бакелитовый соединитель.

Советы по выбору кругов

Расшифровка – это еще далеко не все. Необходимо учитывать также и другую информацию. Довольно многие люди выбирают диски из эльбора. Они отличаются приличной твердостью и весьма стойки к воздействию тепла. Эльбором можно затачивать режущие части и твердые металлы. Повысить качество обработки поверхности можно за счет применения мелкозернистого круга. Но он склонен сильно засаливаться. Весьма вероятен еще и частый прижог материала. Белый электрокорунд неплохо работает для заточки ножей, ножниц и топоров.

Им же отрабатывают и различные уголки.

Есть еще несколько рекомендаций по отбору шлифующего круга:

  • определять диаметр по количеству витков шпинделя;
  • учитывать сокращение износа при наращивании сечения;
  • принимать во внимание ширину охваченного алмазами слоя, если выбран алмазный диск.

Стоит учесть, что простой электрокорунд не пригодится для сверл, для болгарки и для перфораторов, а также для буровых систем. В подобном случае применяется «зеленый» наждачный круг. А вот для ножниц и домашних ножей он, напротив, уже не годится. Из-за сильного нагрева даже лучшая сталь теряет свои режущие свойства. Геометрические размеры те же самые, что и у электрокорундовых моделей.

Выбирать модели для наружного шлифования на станках должны только квалифицированные инженеры и специалисты. Потому разбирать эту тему здесь не имеет смысла. Нужно обратить внимание на другие параметры. Например, при заточке инструмента круг менее плотный:

  • легче очищается;
  • создает минимальную опасность деформации;
  • сравнительно быстро остужается.

Важно: путаница между твердостью круга и твердостью используемого для него абразива недопустима. Чем тверже абразивный инструмент в целом, тем точнее выдерживаемая форма обрабатываемого изделия. Мягкие приспособления ценны там, где приходится обходиться без охлаждения жидкой смазкой. Диск с керамической маркировкой весьма прочен, но непригоден для силовой шлифовки.

Конструкции с вулканической связкой имеют узкую сферу применения, и их надо выбирать продуманно, с подключением специалистов.

Как правильно рассчитать необходимое количество радиаторов отопления

Простые вычисления по площади

Вычислить величину батарей отопления для определенного помещения можно, ориентируясь на его площадь. Это самый простой способ – использовать сантехнические нормы, которые предписывают, что тепловой мощности 100 Вт в час нужно для обогрева 1 кв.м. Надо помнить, что этот метод используется для помещений, у которых потолки стандартной высоты (2,5-2,7 метра), а результат получается несколько завышенным. К тому же он не учитывает таких особенностей, как:

  • число окон и тип стеклопакетов на них;
  • количество в комнате наружных стен;
  • толщина стен здания и из какого материала они состоят;
  • тип и толщина использованного утеплителя;
  • диапазон температур в данной климатической зоне.

Тепло, которое для обогрева комнаты должны давать радиаторы: площадь следует умножить на тепловую мощность (100 Вт). К примеру, для комнаты в 18 кв.м требуется такая мощность батареи отопления:

18 кв.м х 100 Вт = 1800 Вт

То есть, в час для обогрева 18-ти квадратных метров необходимо 1,8 кВт мощности. Этот результат надо поделить на количество тепла, которое в час выделяет секция отопительного радиатора. Если данные в его паспорте указывают, что это составляет 170 Вт, то следующий этап вычислений выглядит так:

1800 Вт / 170 Вт = 10,59

Это число надо округлить до целого (обычно округляется в большую сторону) – получится 11. То есть, чтобы в комнате температура в отопительный сезон была оптимальной, необходимо установить радиатор отопления с 11-ю секциями.

Такой метод подходит только для вычисления величины батареи в помещениях с центральным отоплением, где температура теплоносителя не выше 70 градусов Цельсия.

Есть и более простой способ, который можно применять для обычных условий квартир панельных домов. В этом приблизительном расчете учитывается, что для обогрева 1,8 кв.м площади нужна одна секция. Другими словами, площадь помещения надо разделить на 1,8. Например, при площади 25 кв.м необходимо 14 частей:

25 кв.м / 1,8 кв.м = 13,89

Но такой метод расчета неприемлем для радиатора пониженной или повышенной мощности (когда средняя отдача одной секции варьируется в пределах от 120 до 200 Вт).

Влияние на результат материала изготовления радиатора

В настоящее время наибольшей популярностью пользуются следующие разновидности радиаторов:

  • Чугунные. Чаще всего используется чугунная батарея марки МС-140 с уровнем теплоотдачи 180 Вт. Этот показатель справедлив лишь при использовании теплоносителя с максимальной температурой. На практике такое бывает редко, поэтому фактическая мощность прибора – 60-120 Вт. Именно эти цифры рекомендуется использовать при проведении расчете ватт на квадратный метр отопления.
  • Стальные. Имеют почти такую же площадь, что и чугунные. Это же касается и параметров, точные значение которых указываются в сопроводительной документации. При этом масса стальных изделий меньше, что делает их транспортировку и монтаж более простым.
  • Алюминиевые. Дать общий ответ, сколько отапливает одна секция алюминиевого радиатора проблематично, так как подобные изделия представлены в продаже в большом количестве модификаций. Поэтому в каждом конкретном случае расчета количества секций алюминиевых радиаторов необходимо руководствоваться паспортными данными модели. В общем считается, что средним показателем, сколько обогревает одна секция алюминиевого радиатора, является 100 Вт/м2. Если заявленная мощность прибора меньше, то, скорее всего, речь идет о подделке. Также следует сказать, что уровень теплоотдачи алюминия более высокий, чем у чугуна и стали. Это также следует взять во внимание перед тем, как рассчитать количество секций алюминиевых радиаторов отопления.
  • Биметаллические. Эти изделия, совмещающие в себе высокую теплоотдачу алюминия и прочностные качества стали, в настоящее время пользуются наибольшей популярностью у покупателей (уровень мощности одной секции биметаллического радиатора идентичен тому, на сколько квадратов одна секция алюминиевой батареи). Благодаря хорошей теплоотдаче, разрешается несколько сокращать количество секций при установке. Правильный расчет биметаллических радиаторов позволяет сэкономить финансы даже несмотря на то, что биметаллические радиаторы считаются наиболее дорогими.

Максимальные значения теплоотдачи приборов не рекомендуется использовать при расчете секций алюминиевых радиаторов на квадратный метр – теплоноситель в системе обычно никогда не достигает крайних значений. Более надежный путь – использовать минимальные значения, что позволит гарантированно избежать ошибок. Обустроенная на основе расчета секций алюминиевых радиаторов отопительная система будет обеспечивать комфорт в жилище даже при сильных морозах.

Рассмотрим метод вычислений для комнат с высокими потолками

Однако расчет отопления по площади не позволяет верно определить количество секций для комнат с потолками выше 3 метров. В этом случае надо применять формулу, учитывающую объем помещения. Для обогрева каждого кубического метра объема по рекомендациям СНИП необходим 41 Вт тепла. Так, для комнаты с потолками высотой 3 м и площадью 24 кв.м, расчет будет следующим:

24 кв.м х 3 м = 72 куб.м (объем комнаты).

72 куб.м х 41 Вт = 2952 Вт (мощность батареи для обогрева помещения).

Теперь следует узнать количество секций. В случае, если в документации радиатора указано, что теплоотдача одной его части в час составляет 180 Вт, надо разделить на это число найденную мощность батареи:

2952 Вт / 180 Вт = 16,4

Это число округляется до целого – получается, 17 секций, чтобы обогреть комнату объемом 72 куб.м.

Путём не сложных вычислений можно с лёгкостью определить нужные вам данные.

Тепловая мощность 1 секции

Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.

Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.

Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.

Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.

Формула, необходимая для этого выглядит следующим образом:

КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7

  1. КТ – это то количество тепла, которое требуется данному помещению.
  2. S – площадь.
  3. К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1.27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
  4. К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
  5. К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
      50% — коэффициент составляет 1.2;
  6. 40% — 1.1;
  7. 30% — 1.0;
  8. 20% — 0.9;
  9. 10% — 0.8.
  10. К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
      +35 = 1.5;
  11. +25 = 1.2;
  12. +20 = 1.1;
  13. +15 = 0.9;
  14. +10 = 0.7.
  15. К5 указывает на корректировку при наличии наружных стен.Например:
      когда она одна, показатель равен 1.1;
  16. две наружные стены – 1.2;
  17. 3 стены – 1.3;
  18. все четыре стены – 1.4.
  19. К6 учитывает наличие помещения над комнатой, для которой производятся расчеты.При наличии:
      неотапливаемого чердака – коэффициент 1.0;
  20. чердак с обогревом – 0.9;
  21. жилая комната – 0.8.
  22. К7 – это коэффициент, который указывает на высоту потолка в комнате:
      2.5 м = 1.0;
  23. 3.0 м = 1.05;
  24. 3.5 м = 1.1;
  25. 4.0 м = 1.15;
  26. 4.5 м = 1.2.

Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.

Если вы решили установить алюминиевые радиаторы отопления важно знать следующее:

Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов

Читайте также:  Свободное перемещение агрегата

Дополнительные параметры, которые нужно учесть

Произведя примерный расчет количества секций радиаторов отопления для своей квартиры, не забудьте его откорректировать, приняв во внимание особенности помещения. Их нужно учитывать следующим образом:

  • для угловой комнаты (две стены выходят на улицу) с одним окном мощность радиатора надо увеличить на 20%, а при двух окнах – на 30%;
  • если радиатор монтируется в нише под окном, его теплоотдача снизится, это компенсируется увеличением мощности на 5%;
  • на 10% следует увеличить, если окна выходят на северную либо северо-восточную сторону;
  • экран, для красоты закрывающий радиаторы, «крадет» 15% их теплоотдачи, которые также надо учесть при расчете.

В самом начале следует рассчитать общее значение необходимой для помещения тепловой мощности, учитывая все наличествующие параметры и факторы. И лишь затем разделить это значение на количество тепла, которое выделяет в час одна секция. Результат при дробном значении, как правило, округляется до целого в большую сторону.

Производим расчеты по объему помещения

Для панельного дома со стандартной высотой потолков, как уже указывалось выше, расчет тепла производится из потребности 41 ватт на 1м3. Но если дом новый, кирпичный, в нем установлены стеклопакеты, а наружные стены утеплены, то нужно уже 34 ватт на 1м3.

Формула расчета количества секций радиатора выглядит так: объем (площадь, умноженная на высоту потолка) умножается на 41 или 34 (в зависимости от типа дома) и делится на теплоотдачу одной секции радиатора, указанного в паспорте производителя.

Площадь комнаты 18 м2, высота потолка 2, 6 м. Дом – типичная панельная постройка. Теплоотдача одной секции радиатора – 170 ватт.

18Х2,6Х41/170=11,2. Итак, нам нужно 11 секций радиатора. Это при условии, что комната не угловая и в ней нет балкона, в противном случае лучше установить 12 секций.

Специфика и другие особенности

Также возможна и другая специфика у помещений, для которых делается расчет, не все же они похожи и совершенно одинаковы. Это могут быть такие показатели как:

  • температура теплоносителя меньше 70 градусов – число частей соответственно предстоит увеличить;
  • отсутствие двери в проеме между двумя помещениями. Тогда требуется подсчитать общую площадь обоих помещений, чтобы вычислить количество радиаторов для оптимального обогрева;
  • установленные на окнах стеклопакеты препятствуют потере тепла, следовательно, можно монтировать меньше секций батареи.

При замене старых чугунных батарей, которые обеспечивали нормальную температуру в комнате, на новые алюминиевые или биметаллические, калькуляция весьма проста. Умножитьте теплоотдачу одной чугунной секции (в среднем 150 Вт). Результат разделите на количество тепла одной новой части.

Готовимся к зиме – расчет количества секций радиаторов отопления.

Здесь существует три метода, которые базируются на общих принципах:

  • стандартная величина мощности одной секции может варьироваться от 120 до 220 Вт, поэтому берется средняя величина
  • для корректировки погрешностей в расчетах при покупке радиатора следует заложить 20% резерв

Теперь обратимся непосредственно к самим методам.

Метод первый – стандартный

Исходя из строительных правил, для качественного отопления одного квадратного метра требуется 100 ватт мощности радиатора. Займемся подсчетами.

Допустим, площадь помещения составляет 30 м², мощность одной секции возьмем равной 180 ватт, тогда 30*100/180 = 16,6. Округлим значение в большую сторону и получим, что для комнаты площадью в 30 квадратных метров необходимо 17 секций радиатора отопления.

Однако, если помещение является угловым, то полученное значение следует умножить на коэффициент 1,2. В таком случае, количество необходимых секций радиаторов будет равно 20

Метод второй – примерный

Данный метод отличается от предыдущего тем, что основан не только на площади помещения, но и на его высоте. Обратите внимание, что метод работает только для приборов средней и большой мощности.

При малой мощности (50 ватт и менее) подобные расчеты будут неэффективны ввиду слишком большой погрешности.

Итак, если принять во внимание, что средняя высота помещения равна 2,5 метра (стандартная высота потолков большинства квартир), то одна секция стандартного радиатора способна обогреть площадь в 1,8 м².

Расчет секций для комнаты в 30 «квадратов» будет следующим: 30/1,8=16. Снова округляем в большую сторону и получим, что для обогрева данной комнаты нужно 17 секций радиатора.

Метод третий – объемный

Как видно из названия, подсчеты в этом методе базируются на объеме комнаты.

Условно принимается, что для обогрева 5 кубических метров помещения нужна 1 секция мощностью 200 ватт. При длине в 6 м, ширине 5 и высоте 2,5 м формула для расчета будет следующей: (6*5*2,5)/5 =15. Следовательно, для комнаты с такими параметрами нужно 15 секций радиатора отопления мощностью 200 ватт каждая.

Если радиатор планируется расположить в глубокой открытой нише, то количество секций нужно увеличить на 5%.

В случае, если радиатор планируется полностью закрыть панелью, то увеличение следует сделать на 15%. В противном случае будет невозможно добиться оптимальной теплоотдачи.

Прочитайте статью и узнайте как построить схему водяного отопления частного дома.

Вот здесь – все про то как выбрать радиатор отопления

Климатические зоны тоже важны

Не для кого ни секрет, что в разных климатических зонах имеется разная потребность в обогреве, поэтому при проектировании проекта необходимо учитывать и эти показатели.

Климатические зоны также имеют свои коэффициенты:

  • средняя полоса России имеет коэффициент 1,00, поэтому он не используется;
  • северные и восточные регионы: 1,6;
  • южные полосы: 0,7-0,9 (учитываются минимальные и среднегодовые температуры в регионе).

Данный коэффициент необходимо умножить на общую тепловую мощность, а полученный результат разделить на теплоотдачу одной части.

Выводы

Таким образом, расчет отопления по площади особых трудностей не представляет. Достаточно немного посидеть, разобраться и спокойно посчитать. С его помощью каждый владелец квартиры или дома может легко определить величину радиатора, который следует установить в комнате, кухне, ванной или в любом другом месте.

Если вы сомневаетесь в своих силах и знаниях – доверьте монтаж системы профессионалам. Лучше заплатить один раз профессионалам, чем сделать неправильно, демонтировать и повторно приступить к работе. Или же не сделать ничего вообще.

В продолжение темы: качественные межкомнатные двери www.dveri-tmk.ru помогут сохранить тепло в вашем доме или квартире. И упростить расчёты по площади отопления.

Зачем это нужно

Мотивы для выполнения расчетов довольно очевидны: при проектировании системы отопления необходимо знать количество энергии, которое помещение должно получать в пик холодов для стабилизации внутренней температуры.

В зависимости от результата расчетов подбирается:

  • Во всех без исключения системах водяного отопления — суммарная мощность батарей для отдельного помещения и для дома или квартиры в целом.
  • В автономных отопительных системах — мощность котла.

Заметьте: при покупке твердотопливного котла желателен избыток мощности, так как его растопки будут периодическими, раз в несколько часов. Избыток тепловой энергии аккумулируется теплоносителем и массивными отопительными приборами; иногда для этой цели в контур включается массивный теплоизолированный водяной бак — теплоаккумулятор.

Компенсация теплопотерь

Чтобы мощности батарей хватило для отопления помещения, нужно внести некоторые корректировки:

  • Дробные значения округлить в положительную сторону. Лучше пусть остается некоторые запас мощности, а нужный уровень температуры отрегулируется с помощью термостата.
  • Если в комнате два окна, то нужно поделить высчитанное количество секций на два и установить их под каждым из окон. Тепло будет подниматься, создавая тепловую завесу для холодного воздуха, проникающего в квартиру через стеклопакет.
  • Нужно добавить несколько секций, если две стены в комнате выходят на улицу, или высота потолка достигает больше 3 м.

Мощность 1 секции биметаллических радиаторов отопления

Основной задачей любой батареи отопления является обогрев помещения. По этим причинам теплоотдача — главный параметр, который стоит учитывать при покупке. Для каждой модели отопительных приборов значения теплоотдачи разные, в том числе и для биметалла. На этот параметр влияет объём и количество секций.

Итак, какая мощность 1 секции биметаллических радиаторов отопления? Зная значение, можно правильно рассчитать необходимый размер прибора.

Что такое теплоотдача

Биметаллический радиатор отопления

Определение теплоотдачи сводится к паре простых слов — это количество тепла, выделяемое радиатором в течение определённого времени. Мощность радиатора, тепловая мощность, тепловой поток — обозначение одного понятия и измеряется в Ваттах. Для 1 секции биметаллического радиатора это число равно 200 Вт.

Таблица теплоотдачи радиаторов отопления

В некоторых документах встречаются значения теплоотдачи, рассчитанные в калориях за 1 час. Во избежание путаницы, калории легко переводятся в Ватты с помощью простейших подсчётов (1 Вт = 859,8 кал/час).

Тепло от батареи обогревает комнату в результате трёх процессов:

  • теплообмена;
  • конвекции;
  • излучения.

Процесс обогрева комнаты

Каждая модель отопительных приборов использует все виды обогрева, но в разных пропорциях. Например, радиатором считаются те батареи, передающие в окружающее пространство от 25% тепловой энергии посредством излучения. Но сейчас термином «радиатор» начали называть любой отопительный прибор вне зависимости от основного метода обогрева.

Размеры и ёмкость секций

Биметаллические радиаторы за счёт вставок из стали компактнее алюминиевых, чугунных, стальных моделей. В какой-то степени это неплохо, чем меньше секция по размерам, тем меньше требуется теплоносителя для обогрева, а значит в эксплуатации батарея экономичнее по расходам теплоэнергии. Однако, чересчур узкие трубы быстрее засоряются мусором и хламом, которые являются неизбежными спутниками в современных тепловых сетях.

Мусор и грязь в батарее отопления

У хороших моделей радиаторов из биметалла толщина стальных сердечников внутри как у стенок обычной водопроводной трубы. От ёмкости секций зависит теплоотдача батареи, а межосевое расстояние непосредственно влияет на параметры ёмкости:

  • 20 см — 0,1-0,16 л;
  • 35 см — 0,15-0,2 л;
  • 50 см — 0,2-0,3 л.

Из приведённых данных следует, что радиаторам из биметалла требуется малое количество теплоносителя. К примеру, отопительный прибор из десяти секций 35 см высотой и 80 см в ширину вмещает лишь 1,6 л. Несмотря на это, силы теплового потока достаточно, чтобы прогреть воздух в комнате площадью 14 кв. м. Стоит учесть, что у батареи такого размера вес почти в два раза больше, чем у алюминиевых аналогов — 14 кг.

Подавляющее большинство батарей из биметалла можно приобрести в специализированных магазинах по одной секции и собрать радиатор ровно таких размеров, какие требует помещение. Это удобно, хотя существуют цельные модели с фиксированным количеством секций (обычно не более 14 штук). У каждой детали по четыре отверстия: два входных и два выходных. Их размеры могут разниться от модели отопительного прибора. Чтобы радиаторы из биметалла было проще собирать, два отверстия сделаны с правой резьбой, а два — с левой.

Сборка биметаллических радиаторов отопления

Как правильно подобрать нужное количество секций

Теплоотдача биметаллических приборов отопления указана в техпаспорте. На основе этих данных и производятся все необходимые расчёты. В случаях, когда значение теплоотдачи в документах не указано, эти данные можно посмотреть на официальных сайтах производителя либо воспользоваться при расчётах усреднённым значением. Для каждой отдельно взятой комнаты должен проводиться свой расчёт.

Чтобы посчитать нужное число секций из биметалла, нужно учитывать несколько факторов. Параметры теплоотдачи у биметалла немного выше, чем у чугуна (с учётом одинаковых условий эксплуатации. Для примера, пусть температура теплоносителя будет 90° С, тогда мощность одной секции из биметалла — 200 Вт, из чугуна — 180 Вт).

Таблица расчета мощности нагрева радиатора

Если вы собрались менять чугунный радиатор на биметаллический, то при тех же размерах новая батарея будет греть чуть лучше, чем старая. И это хорошо. Стоит учитывать, что со временем теплоотдача будет чуть меньше из-за возникновения засоров внутри труб. Батареи засоряются отложениями, которые появляются из-за контактов металлов с водой.

Поэтому если вы все же решитесь на замену, то спокойно берите то же количество секций. Иногда устанавливают батареи с небольшим запасом в одну или две секции. Это делается, чтобы избежать потерь теплоотдачи из-за засорения. А вот если вы приобретаете батареи для нового помещения, без расчётов не обойтись.

Расчёт по габаритам

Теплоотдача радиаторов зависит от объёма помещения, которое необходимо обогреть. Чем больше комната, тем больше потребуется секций. Поэтому самый простой расчёт — по площади комнаты.

Для сантехники существуют особые нормы, строго регламентированные СНиП. Батареи не являются исключением. Для зданий в полосе с умеренным климатом стандартная мощность отопления составляет 100 Вт на каждый квадратный метр комнаты. Посчитав площадь помещения, умножив ширину на длину, необходимо еще умножить полученное значение на 100. Так получится общая теплоотдача батареи. Осталось только разделить её на параметры теплоотдачи биметалла.

Формула для расчета количества секций по габаритам комнаты

Для комнаты 3х4 м. подсчёт будет выглядеть следующим образом:
К = 3х4х100/200 = 6 шт.
Формула предельна проста, но позволяет вычислить лишь приблизительное количество секций из биметалла. В этих расчётах не учтены такие важные параметры как:

  • высота потолков (формула более или менее точна при потолках не выше 3 м.);
  • расположение комнаты (северная сторона, угол дома);
  • количество оконных и дверных проёмов;
  • степень утепления внешних стен.

Насколько сильно должна греть батарея

Расчет по объему

Расчёты теплоотдачи батареи по объёму комнаты немного сложнее. Для этого понадобится знать ширину, длину и высоту помещения, а также нормативы отопления, установленные для одного м 3 — 41 Вт.

Какой теплоотдачей должны обладать биметаллические радиаторы для комнаты 3х4 м. с учётом высоты потолков в 2,7 м: V = 3х4х2,7 = 32,4 м 3 .
Получив объём, легко посчитать теплоотдачу батареи: Р = 32,4х41 = 1328,4 Вт.

В итоге количество секций (с учётом тепловой мощности батареи при высокотемпературном режиме 200 Вт) будет равно: К = 1328,4/200 = 6,64 шт.
Полученное число, если оно не целое, всегда округляется в большую сторону. Исходя из более точных расчётов, понадобится 7 секций, а не 6.

Коэффициенты поправки

Несмотря на одинаковые значения в техпаспорте, фактическая теплоотдача радиаторов может отличаться в зависимости от условий эксплуатации. Учитывая, что выше приведённые формулы точны только для домов со среднестатистическими показателями утепления и для местностей с умеренным климатом, при других условиях необходимо вводить поправки в расчёты.

Коэффициенты поправки при расчете количества секций батарей отопления

Для этого полученное в ходе вычислений значение дополнительно умножается на коэффициент:

  • угловые и северные комнаты — 1,3;
  • регионы с экстремальными морозами (Крайний Север) — 1,6;
  • экран или короб — прибавляйте ещё 25%, ниша — 7%;
  • для каждого окна в комнате общая теплоотдача для помещения увеличивается на 100 Вт, для каждой двери — 200 Вт;
  • коттедж — 1,5;

Важно! Последний коэффициент при расчёте биметаллических радиаторов используется крайне редко, потому что такие приборы отопления почти не ставят в частных домах из-за дороговизны.

Биметаллические батареи отопления

Эффективная теплоотдача

Значения тепловой отдачи для радиаторов указаны в техпаспорте или на сайтах производителей. Они подходят для конкретных параметров отопительных систем. Тепловой напор системы — важная характеристика, которую нельзя игнорировать при проведении необходимых вычислений. Обычно значение теплоотдачи 1 секции приводится для теплового напора 60° С, что соответствует высокотемпературному режиму отопительной системы с температурой воды 90°С. Такие параметры сейчас встречаются в старых домах. Для новостроек уже используются более современные технологии, при которых уже не требуется высокого теплового напора. Его значение для отопительной системы равно 30 и 50° С.

Температурный график системы отопления

Из-за разных значений теплового напора в техпаспорте и по факту, необходимо пересчитать мощность секций. В большинстве случаев она оказывается ниже заявленной. Значение теплоотдачи умножают на реальное значение теплового напора и делят на то, что указано в документах.

Эффективная теплоотдача батарей отопления в зависимости от способа установки и подключения

Параметры отдачи одной секции биметаллической батареи отопления напрямую влияют на её габариты и способность обогревать помещение. Сделать точные расчёты, не зная значения теплоотдачи биметалла, невозможно.

Добавить комментарий