Эффект Холла принцип работы, объяснение теории, формула
Принцип эффекта Холла — одна из самых популярных теорий измерения магнитного поля. В этом посте будет обсуждаться эффект Холла: принцип его работы, объяснение теории, формула, применение, включая расчеты для напряжения Холла, коэффициента Холла, концентрации носителей заряда, подвижности Холла и плотности магнитного поля.
Принцип эффекта Холла объясняет поведение носителей заряда при воздействии электрического и магнитного полей. Этот принцип можно рассматривать как расширение силы Лоренца, которая является силой, действующей на носители заряда (электроны и отверстия), проходящие через магнитное поле.
Датчики, работающие по этому принципу, называются датчиками Холла. Эти датчики пользуются большим спросом и имеют очень широкое применение, например, датчики приближения, переключатели, датчики скорости вращения колес, датчики положения и так далее.
История эффекта Холла
Принцип эффекта Холла был назван в честь американского физика Эдвина Холла (1855–1938). Впервые он был представлен миру в 1879 году.
В 1879 году он обнаружил, что когда проводник / полупроводник с током расположен перпендикулярно магнитному полю, генерируется напряжение, которое можно измерить под прямым углом к пути тока. До этого времени электрический ток в проводе считался чем-то похожим на текущую жидкость в трубе.
Принцип эффекта Холла предполагает, что магнитная сила в токе приводит к скученности на конце трубы или провода. Электромагнитный принцип теперь объясняет явления, лежащие в основе эффекта Холла, гораздо лучше. Теория этого ученого, безусловно, намного опередила свое время. Лишь два десятилетия спустя, с введением полупроводников, работы по исследованию эффекта Холла были эффективно использованы.
Первоначально этот принцип использовался для классификации химических образцов. Позднее датчики Холла (с использованием полупроводниковых соединений арсенида индия) стали источником для измерения постоянного или статического магнитного поля без поддержания датчика в движении. Через десятилетие, в 1960-х годах, появились кремниевые полупроводники. Это было время, когда элементы Холла были объединены со встроенными усилителями, и таким образом выключатель Холла был представлен миру.
Цифровые датчики Холла делятся на униполярные и биполярные
Помимо эффекта Холла, законы которого описаны классической физикой и соблюдаются во всех нормальных или приближённых к нормальным условиям экспериментах, выделяют ещё несколько разновидностей явления возникновения разности потенциалов в проводнике.
Аномальный
Аномальным называют любой случай накопления заряда на грани проводника, в котором исключено воздействие внешних магнитных полей. Необходимым условием является перпендикулярная направленность разницы потенциалов относительно направления силы тока.
Причины, по которым возникает аномальный эффект Холла, обычно кроются в намагниченности металла-проводника или особенностях его молекулярной структуры.
Квантовый
Законы возникновения разницы потенциалов в «квантовом мире» исследуются на примере плоского проводника типа ДЭГ (двумерный электронный газ). Квантовый наблюдается в сильных магнитных полях и при низких температурах. Он выражается в квантовании холловского сопротивления, которое на графике имеет чётко выраженные «участки плато». Чем выше сопротивление, тем длиннее участки плато и выше разница между ними.
Открытие данного явления — одна из основных вех современной квантовой физики. Клаус фон Клитцинг, первооткрыватель квантового эффекта Холла, в 1985 году был удостоен Нобелевской премии.
Дробный
Многие передовые учёные в 80-х годах прошлого века заинтересовались исследованиями фон Клитцинга и продолжили изучать свойства разности потенциалов в ДЭГ. Наибольших успехов достигли Даниэль Цуи и Хорст Штёрмер, которые проанализировали промежуточные участки между «плато сопротивления» и пришли к выводу, что при существенном увеличении интенсивности магнитных полей «участки плато» можно получить и на дробных значениях электронных уровней Ландау, например, при n=1/3; n=2/5; n=3/7 и т. д.
Такое явление получило название дробного квантового эффекта Холла, а его первооткрыватели получили Нобелевскую премию по физике в 1998 году. В настоящее время ведутся расширенные исследования квантового и дробного квантового видов данного эффекта.
Спиновый
В 2003–2004 годах было изучено поведение электронов с антипараллельными спинами в проводниках, изолированных от каких-либо магнитных полей. Теоретической базой исследования послужили теории Владимира Переля, выдвинутые в далёком 1971 году. Они были доказаны на практике, когда удалось зафиксировать отклонения данных групп электронов к противоположным граням проводника. Движение заряженных частиц напоминает первый вид эффекта — аномальный.
Теория за принципом эффекта Холла
Прежде всего мы должны понять, что такое электрический ток. Электрический ток — это в основном поток заряженных частиц через проводящий путь. Эти заряженные частицы могут быть «отрицательно заряженными электронами» или даже «положительно заряженными отверстиями» (пустоты, в которых должны находиться электроны). Теперь давайте перейдем к теме.
Если мы возьмем тонкую проводящую пластину (как показано выше на рис. 1 и повторено ниже для простоты считывания) и подключим ее к цепи с батареей (источником напряжения), то ток начнет течь по ней. Носители заряда будут течь по прямой линии от одного конца пластины к другому.
Поскольку носители заряда находятся в движении, они будут создавать магнитное поле. Теперь, когда вы поместите магнит рядом с пластиной, его магнитное поле будет искажать магнитное поле носителей заряда. Это расстроит прямой поток носителей заряда. Сила, которая нарушает направление потока носителей заряда, называется силой Лоренца.
Из-за искажения в магнитном поле носителей заряда отрицательные заряженные электроны будут отклоняться на одну сторону пластины, а положительные заряженные дыры — на другую сторону. Вот почему разность потенциалов (также называемая напряжением Холла) будет генерироваться между обеими сторонами пластины, что можно измерить с помощью измерителя.
Этот эффект известен как эффект Холла. Чем сильнее магнитное поле, тем больше электронов будет отклоняться. Это означает, что чем выше ток, тем больше электронов будет отклоняться. И чем больше будут отклоняться электроны, тем больше будет разность потенциалов между обеими сторонами пластины. Поэтому мы можем сказать, что:
Напряжение Холла прямо пропорционально электрическому току, и прямо пропорционально приложенному магнитному полю.
Изоляция
Одно из главных преимуществ датчиков Холла заключается в электрической изоляции, которую в контексте проектирования схем и систем называют гальванической развязкой. Принцип гальванической развязки используется всякий раз, когда проект требует, чтобы две схемы связывались таким способом, который предотвращает любую возможность протекания между ними электрического тока. Простой пример, когда цифровой сигнал передается через оптоизолятор, который преобразует импульсы напряжения в импульсы света и таким образом передает данные оптическим способом, а не электрическим. Одной из основных причин для реализации гальванической развязки является предотвращение проблем, связанных с земляными контурами:
Основные принципы проектирования схем предполагают, что взаимосвязанные компоненты совместно используют общую точку земли, на которой предполагается 0 В. В реальной жизни, однако, «земля» состоит из проводников, имеющих ненулевое сопротивление, и эти проводники служат в качестве обратного пути протекания тока от схемы назад к источнику питания. Закон Ома напоминает нам, что ток и сопротивление дадут напряжение, и это падение напряжения в обратном пути означает, что «земля» в одной части схемы не точно такая же по потенциалу, как «земля» в другой части схемы. Эта разница в потенциалах земли может привести к проблемам, начиная от незначительных до катастрофических.
Для предотвращения протекания постоянного тока между двумя схемами используется гальваническая развязка, позволяющая успешно общаться схемам с различными потенциалами земли. Это особенно актуально для измерения токов: низковольтный датчик и обрабатывающая цепь могут понадобиться для контроля больших, изменяющихся в больших пределах токов, например, в цепи привода двигателя. Эти большие, быстро изменяющиеся токи приведут к значительным колебаниям напряжения в цепи обратного пути протекания тока. Датчик Холла позволяет системе контролировать ток привода и защитить схему высокоточного датчика от этих вредных колебаний земли.
Формула эффекта Холла
Вот некоторые математические выражения, которые широко используются в вычислениях эффекта Холла:
Напряжение Холла
Напряжение Холла представлено V H. Формула для напряжения Холла:
I — Ток, протекающий через датчик
B — напряженность магнитного поля
q — заряд
n — количество носителей заряда на единицу объема
d — толщина датчика
Коэффициент Холла
Он представлен RH. Формула для коэффициента Холла: RH равно 1 / (qn). Коэффициент Холла (R H) положителен, если число отверстий положительного заряда больше, чем число электронов отрицательного заряда. Аналогично, коэффициент Холла (RH) отрицателен, если число отрицательных зарядовых электронов больше, чем число отверстий положительного заряда.
Концентрация несущей заряда
Концентрация электронов в носителе заряда обозначена как «n», а «дырки» — как «p». Математическое выражение для концентрации носителей заряда:
Холловская мобильности
Холловская мобильность для электронов представлена как «μ n», а для отверстий — как «μ p». Математическое выражение для мобильности Холла:
μ n — проводимость за счет электронов
μ p — проводимость благодаря отверстиям
Плотность магнитного потока
Плотность магнитного потока обозначена буквой «B». Формула для плотности магнитного потока:
Синфазное напряжение
Единица измерения напряжения
Датчики Холла нашли свое применение и в определении показателей тока при работах с высоким напряжением. Обычный усилитель измеряет разность между возникающим напряжением с обеих сторон резистора. Однако, они работают в весьма небольшом разбросе синфазности, т.е. такой прибор не будет работать правильно, потому что входные напряжения почти одинаковы, а разность между ними и напряжением земли очень большая. Диапазон таких напряжений для токизмерительных усилителей составляет от 80 до 100 ватт. А вот датчики Холла преобразовывают электроток в его напряжения, не связываясь с заземлением. Значит, при малом напряжении (физическое повреждение не наступает) напряжение синфазности не мешает датчикам Холла выполнять свои измерения.
Что такое эффект Холла, стало известно более 150 лет назад, однако применять его стали относительно недавно – в электротехнике в интегральных микросхемах датчиков Холла, обеспечивающих хорошую электроизоляцию, и даже в современных смартфонах (на основе этого эффекта работают электронные компасы).
Применение принципа эффекта Холла
Принцип эффекта Холла используется в следующих случаях:
- Оборудование для измерения магнитного поля.
- Множитель приложений для обеспечения фактического умножения.
- Тестер эффекта Холла для измерения постоянного тока.
- Измерение фазового угла. Например, при измерении углового положения коленчатого вала, чтобы точно выровнять угол зажигания свечей зажигания
- Датчики линейных или угловых перемещений. Например, чтобы определить положение автомобильных сидений и ремней безопасности и выступить в роли блокировки для управления подушкой безопасности.
- Датчики приближения.
- Датчики с эффектом Холла
- Для определения скорости вращения колеса и, соответственно, помощи антиблокировочной тормозной системы (ABS).
Достоинства и недостатки датчиков Холла
Главным плюсом датчиков Холла является отличная электрическая изоляция между путем протекания электричества и цепью измерения (в проектировании схем она носит название гальванической развязки). Ее принцип незаменим в тех случаях, когда для проекта необходима связь электросхем, полностью исключающая обмен электрическим током между ними. Такие приборы не оказывают влияния на предмет измерения, поскольку не оказывается сколько-нибудь существенного сопротивления, поэтому электромагнитные показатели схемы остаются такими же, как до включения датчика Холла в цепь.
Пример использования. Оцифрованный сигнал необходимо передать с помощью оптоизолятора, поскольку в нем импульсы напряжения перекладываются в световые, и передача происходит с помощью оптики, а не электрики. Гальваническая развязка с использованием эффекта Холла помогает не допустить проблемы, которые вызывают контуры заземления. Если приходится измерять токи большого напряжения, то с помощью датчиков Холла рассеивается самая малая мощность.
Также приборы Холла демонстрируют довольно высокую точность измерений, минимальный процент ошибок стремится к единице.
Обратите внимание! В отдельных случаях датчики с резисторами дают даже лучшие показатели (ниже одного процента), однако и более высокий процент ошибок допустим при исследованиях больших напряжений, где обычно и применяют датчики Холла.
У приборов с использованием описываемого эффекта есть и зарегистрированные недостатки. Среди них можно выделить то, что все они работают лишь с весьма ограниченным разбросом частот и стоят достаточно дорого. Так, «АСиЭс-712» может применяться на частотах до 80 килогерц, а широкополосный «Мелексис МЛХ-91-208» – максимум до 250 килогерц, тогда как обычный резистивный датчик, имеющий высокоскоростное усиление, справляется с частотами в мегагерцовом интервале.
Как эффект Холла можно использовать для определения типа используемого полупроводника
Коэффициент Холла говорит обо всем. Если коэффициент Холла отрицателен, это означает, что основными носителями заряда являются электроны. И поскольку число электронов больше по сравнению с отверстиями в полупроводниках n-типа, это ясно указывает на то, что испытываемый полупроводник n-типа. Аналогичным образом, если коэффициент Холла положительный, это означает, что основными носителями заряда являются дырки. И поскольку число отверстий больше по сравнению с электронами в полупроводниках p-типа, это ясно указывает на то, что испытываемый полупроводник p-типа.
Аномалия
Аномальный эффект Холла – один из составных компонентов этого физического явления. Событие представляется в проявлении перпендикулярного напряжения в проводнике, через который пропускают определенный ток. Весь процесс проходит при отсутствии прилагающийся постоянной величины м. п. Иными словами, это физическое событие, аналогичное эффекту Холла, с разницей в том, что эффект наблюдаем при отсутствии внешнего м. п. с постоянным показателем.
Главным условием, без которого невозможно созерцание данного явления, аномалии эффекта Холла, является несоблюдение инвариантности, относящейся к времени обращенного типа, находящегося в системе. Пример такой аномалии можно отслеживать в образцах, подвергшихся намагничиванию.
Ссылки[править | править код]
- Эффект Холла — описание на Effects.ru. копия из веб-архива
- Томилин К. А. Фундаментальные физические постоянные в историческом и методологическом аспектах. М.: Физматлит, 2006, 368 с, страница 366. (djvu)
- Проставив сноски, внести более точные указания на источники.
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.
Итоги
Эффект Холла находит свое применение в самых разнообразных областях промышленности и является довольно важным открытием, необходимым для функционирования множества современных приборов, без которых сейчас невозможно обойтись. А также этот эффект содержит много составных компонентов в виде квантового э-та Холла или его аномалии, спинового э-та и магнетосопротивления. По существу он базируется на разности, возникающей в потенциалах, находящихся в поперечном положении и подвергающихся воздействию тока с постоянной величиной на проводник в сильном м. п.
Отклонение тока в спиновом эффекте
Эффект Холла содержит в себе еще одно физическое явление, а именно спиновой эффект Холла, который предсказали Дьяконов на пару с Перелем, еще в 1971 г. По сути, это случай, когда носители тока, имеющие противоположное направление спинов, отклоняются в разные стороны, лежащие по отношению к полю перпендикулярно. Необходимым условием служит отсутствие в немагнитном проводнике магнитного поля. Выделяют внешний (связанный с рассеиванием спин-зависимого характера) и внутренний (связанный с взаимодействием спин-орбитального типа) спиновой э-т.
Изучение эффекта холла
Цель работы: Измерение холловской разности потенциалов в полупроводниковой пластине и определение концентрации, подвижности и знака носителей заряда, участвующих в токе.
Введение
Эффект Холла – это возникновение поперечной разности потенциалов при пропускании тока через металлическую или полупроводниковую пластинку, помещенную в магнитное поле, таким образом, чтобы вектор индукции магнитного поля () было направлено перпендикулярно вектору плотности тока ().
C помощью эффекта Холла (1879 г.) можно измерить зависимость плотности тока от концентрации свободных электронов.
Сущность эффекта Холла, на основе классической электронной теории, заключается в следующем. Если проводник, по которому течет ток, поместить в магнитное поле, то на заряды движущиеся в магнитном поле действует сила Лоренца, направленная перпендикулярно их движению. Если, например, электроны движутся в прямоугольном проводнике на рис. 1 влево, то направленное в плоскость чертежа магнитное поле будет действовать силой, направленной вверх. В результат электроны будут двигаться вверх, а положительные заряды к нижнейповерхности проводника.
Вследствие этого между поверхностями проводника А и В возникает разность потенциалов. заряда.
Рис. 1
Она будет увеличиваться до тех пор, пока не наступит равновесное состояние, при котором сила холловского электрического поля станет равной магнитной силе Лоренца:
[](1)
Так как магнитное поле направлено перпендикулярно к линиям тока, то напряженность поперечного электрического поля равна по абсолютной величине
(2)
Тогда разность потенциалов поперечного электрического поля между поверхностями проводника
(3)
где d-расстояние между поверхностями А и В проводника.
Средняя скорость направленного движения носителей тока связана с плотностью тока j соотношением j = nqV , где n- концентрация носителей заряда(число носителей в единице объема, q-заряд носителя). Следовательно,
(4)
Выразив плотность тока через силу тока I:
(5)
(b-толщина пластины) и подставив выражения (5) и (4) в (3), получим
, (6)
где . (7)
Коэффициент называют постоянной Холла.
Формула (7) получена без учёта закона распределения электронов по скоростям. Более точный расчет с учетом закона распределения носителей по скоростям в рамках классической статистики приводит к выражению для постоянной Холла
В полупроводниках с атомной решеткой, например для кремния,
поэтому
Для полупроводников с ионной связью, например для интерметаллического соединения арсенида галлия А = 1. В этом случае применима формула (7).
Соотношение (6) позволяет определить постоянную Холла и концентрацию носителей заряда n, в образце из опытных данных:
(9)
Если известно, то, измеряя и I, можно найти . Этот способ измеренияиспользуется в технике (датчики Холла).
Важной характеристикой полупроводника является подвижность в нем носителей заряда, под которой подразумевается средняя скорость, приобретаемая носителем в поле, напряженность которого равна единице. Если в поле напряженностью носители приобретают скорость, то подвижность ихu, равна:
(10)
Используя связь между плотностью тока, напряженностью электрического поля и проводимостью и учитывая (4) и(10), можно выразить подвижность через проводимость σ и концентрацию носителей заряда:
(11)
Из соотношений (7) и (11) следует:
Таким образом, для определения подвижности носителей, необходимо измерить и σ.
Из (7) следует, что знак постоянной Холла совпадает со знаком носителей заряда. У полупроводников постоянная Холла может быть отрицательной и положительной, так как существует два типа проводимости. У полупроводников с электронной проводимостью( полупроводников n-типа) знак постоянной Холла отрицателен. Если электропроводимость полупроводников осуществляется положительными зарядами или так называемыми «дырками», то знак постоянной Холла положителен. Такие полупроводники называются дырочными (полупроводниками р-типа). Если в полупроводнике одновременно осуществляется оба типа проводимости, то по знаку постоянной Холла можно судить о том, какой из них является преобладающими.
Зависимость знака постоянной Холла от знака носителей заряда, создающих в данном веществе можно понять из рис.2, на котором демонстрируется эффект Холла для образцов с положительными и отрицательными носителями.
аправление силы Лоренца изменяется на противоположное как при изменении направления движения зарядов, так и при изменении их знака.
Рис. 2
Следовательно, при одинаковом направлении тока и магнитной индукции ()сила Лоренца, действующая на положительные и отрицательные носители, имеет одинаковое направление.
Метод измерения и описание аппаратуры
Изучение эффекта Холла в полупроводниках проводится на учебном приборе, общий вид и электрическая схема которого представлены соответственно на рис. 3 и 4 Исследуемый образец О (см. рис. 3), представляющий собой тонкий пластинку кремния , вмонтирован в прозрачный диэлектрический держатель D, который можно поворачивать на 180° с помощью рукоятки Р1 в поле постоянного магнита Цилиндрический экран Э, изготовленный из ферромагнетика, который можно перемещать с помощью рукоятки Р2, позволяет производить магнитную экранировку образца. Блок питания Б, (см. рис. 4) и включается тумблером Т, служит для создания продольного тока через образец. Величина тока регулируется потенциометром Пи измеряется миллиамперметром, а его направление изменяется, с помощью переключателя П.
Рис. 4
Микроамперметр А с симметричной относительно нуля шкалой, включаемый последовательно с сопротивлением Rили Rс помощью переключателя Пслужит для определения тока, вызванного ЭДС Холла. Все приборы и приспособления закреплены на панели, в которую вмонтированы также клеммы 1~12, с помощью которых осуществляется сборка цепи питания исследуемого образца и цепи измерения ЭДС Холла. В панели имеется окно для наблюдения за взаимным расположением магнитного экрана, исследуемого образца и постоянного „магнита, южный и северный полюса которого обозначены буквами S и N. Значения магнитной индукции поля постоянного магнита, удельной проводимости и толщины исследуемого образца, величины сопротивлений Rи R. размещены на лабораторном стенде.
Электрическая схема измерительной установки размещена на панели установки.
В данной работе исследуется ЭДС Холла (поперечная разность потенциалов) и зависимости от величины протекающего по образцу продольного тока I при постоянном значении внешнего магнитного поля. Измерение ЭДС Холла проводится при различных углах между векторами В и j т.е. между направлениями магнитного поля и направлением тока через образец.
Для определения ЭДС Холла используют метод, основанный на измерении с помощью микроамперметра μA, нагружаемого на два различных сопротивления R1 и R2 двух токов i1 и i2 в холловской цепи. Расчет ЭДС Холла производится по формуле
(15)
Формула получается из решения уравнения Кирхгофа для холловской цепи
, (14)
где R —нагрузочное сопротивление (Rили R);
R- контактное сопротивление;
R- сопротивление образца между холловскими электродами;
R- сопротивление микроамперметра.
Подставляя вместо R значения R1 и R2, получим систему двух уравнении:
;
. (15)
Если выбирать значения токов i1 и i2 достаточно близкими друг к другу, то контактное сопротивление RK можно считать постоянным при измерениях. Решая систему уравнений (15), получим расчетную формулу (13).
Для исключения паразитных ЭДС, возникающих из-за наличия асимметрии холловcких контактов и температурного градиента и образце, окончательное значение ЭДС Холла рассчитывается как среднее арифметическое из четырех измерений: двух при разном направлении продольного тока и двух при разном направлении магнитного поля.
Эффект холла — в чем заключается, применение для датчиков тока и положения, формула, квантовый, аномальный и другие виды
Электричество и магнитные поля существуют в тесной взаимосвязи друг с другом. Многие известные физики посвятили жизнь исследованию этой связи, поиску и описанию законов, на которых она базируется, а также способов применения на практике полученных теоретических сведений. Одним из таких учёных был Эдвин Герберт Холл, выдающийся американский исследователь, автор ценных научных материалов. В ходе одного из экспериментов он обнаружил необычное явление, которое со временем получило название «эффект Холла». Сегодня он массово используется в бытовой и компьютерной технике, электрооборудовании автомобилей, контрольно-измерительных приборах и, конечно, исследовательских лабораториях. Так в чём же физическая суть эффекта Холла и почему он не теряет своей актуальности спустя почти полтора века с момента открытия?
Что такое эффект Холла?
Эдвин Холл, пропуская ток через тонкую золотую пластину, расположенную между двумя магнитами, заметил, что носители заряда (электроны) отклоняются от центральной оси к одной из граней проводника. Таким образом, на этой грани возникает отрицательный заряд, а на противоположной — положительный. Возникшая разность потенциалов именуется холловским напряжением. Она строго перпендикулярна току в проводнике и вектору магнитной индукции. Это явление наблюдается не только в золоте, но и в любых проводниковых и полупроводниковых материалах, помещённых в магнитное поле.
Если проанализировать физическую суть, можно обнаружить, что у истоков накопления заряда на гранях проводника лежит сила Лоренца, с которой магнитное поле воздействует на заряженную частицу. Под её воздействием электроны будут накапливаться на грани проводника до тех пор, пока их суммарный заряд не скомпенсирует существующее магнитное поле.
В том же случае, когда внешнее магнитное поле слишком велико, система выйдет за рамки стабильности, и заряженные частицы начнут двигаться по циклоиде. Это называется несоблюдением критерия малости.
Цифровые датчики Холла делятся на униполярные и биполярные
Помимо эффекта Холла, законы которого описаны классической физикой и соблюдаются во всех нормальных или приближённых к нормальным условиям экспериментах, выделяют ещё несколько разновидностей явления возникновения разности потенциалов в проводнике.
Аномальный
Аномальным называют любой случай накопления заряда на грани проводника, в котором исключено воздействие внешних магнитных полей. Необходимым условием является перпендикулярная направленность разницы потенциалов относительно направления силы тока.
Причины, по которым возникает аномальный эффект Холла, обычно кроются в намагниченности металла-проводника или особенностях его молекулярной структуры.
Квантовый
Законы возникновения разницы потенциалов в «квантовом мире» исследуются на примере плоского проводника типа ДЭГ (двумерный электронный газ). Квантовый наблюдается в сильных магнитных полях и при низких температурах. Он выражается в квантовании холловского сопротивления, которое на графике имеет чётко выраженные «участки плато». Чем выше сопротивление, тем длиннее участки плато и выше разница между ними.
Открытие данного явления — одна из основных вех современной квантовой физики. Клаус фон Клитцинг, первооткрыватель квантового эффекта Холла, в 1985 году был удостоен Нобелевской премии.
Дробный
Многие передовые учёные в 80-х годах прошлого века заинтересовались исследованиями фон Клитцинга и продолжили изучать свойства разности потенциалов в ДЭГ. Наибольших успехов достигли Даниэль Цуи и Хорст Штёрмер, которые проанализировали промежуточные участки между «плато сопротивления» и пришли к выводу, что при существенном увеличении интенсивности магнитных полей «участки плато» можно получить и на дробных значениях электронных уровней Ландау, например, при n=1/3; n=2/5; n=3/7 и т. д.
Такое явление получило название дробного квантового эффекта Холла, а его первооткрыватели получили Нобелевскую премию по физике в 1998 году. В настоящее время ведутся расширенные исследования квантового и дробного квантового видов данного эффекта.
Спиновый
В 2003–2004 годах было изучено поведение электронов с антипараллельными спинами в проводниках, изолированных от каких-либо магнитных полей. Теоретической базой исследования послужили теории Владимира Переля, выдвинутые в далёком 1971 году. Они были доказаны на практике, когда удалось зафиксировать отклонения данных групп электронов к противоположным граням проводника. Движение заряженных частиц напоминает первый вид эффекта — аномальный.
Формулы и расчёты
Поскольку данный эффект базируется на силе Лоренца, то именно с её определения и начинается математическое описание возникшей разницы потенциалов. Сила Лоренца определяется из следующего выражения:
- q — заряд частицы;
- v — скорость движения частиц;
- B — внешнее магнитное поле.
Электрическое поле, сформированное образовавшимися на гранях проводника зарядами, тоже влияет на движущиеся в сечении электроны. Сила этого влияния описывается так:
- q — заряд частицы;
- E — напряжённость внутреннего электрического поля.
Когда разность потенциалов уравновешивает магнитное поле, система считается стабильной. При этом соблюдается условие Fл= Fэл. Следовательно, верны и два следующих утверждения:
Скорость электронов обычно определяется с помощью формулы плотности тока:
- q — заряд частицы;
- n — кол-во частиц на единицу объёма.
Теперь электрическое поле E можно описать с помощью выражения:
Найдём разность потенциалов:
Uн=dE=djB/qn, где d — толщина проводящей пластины.
Упростить данное выражение можно с помощью так называемой «постоянной Холла», которая имеет вид R=1/qn. Окончательная формула разности потенциалов примет вид:
То есть, разность потенциалов прямо пропорциональна толщине проводника, магнитной индукции и плотности тока.
Применение
Поскольку данное явление позволяет адекватно оценить концентрацию и подвижность заряженных частиц, проследить чёткую зависимость между силой тока, внешним магнитным полем и поведением электронов в материале, он нашёл широкое применение на практике. В общем виде устройства и приборы, принцип действия которых основан на эффекте Холла, можно разделить на две категории: контрольно-измерительное оборудование для материалов с различной проводимостью и электронные датчики.
В проводниках и полупроводниках
В точном машиностроении рассматриваемый эффект используют для определения электромагнитных свойств и молекулярной структуры материала. В проводниках эти показатели оцениваются посредством анализа движения электронов под воздействием силы тока и магнитных полей, в полупроводниках же с равной эффективностью анализируется как поведение электронов, так и образование электронных дырок. Широкое распространение получил метод ван дер Пау, позволяющий определить:
- тип полупроводника (p или n);
- концентрацию заряженных частиц;
- холловскую подвижность заряженных частиц.
Метод применим к любому плоскому образцу произвольной формы, толщина которого намного меньше длины исследуемого участка. Он широко используется при первичных расчётах полупроводниковых приборов: диодов, транзисторов, тиристоров и др.
Направление поля Холла в проводниках зависит от их типа
Датчики Холла — назначение и разновидности
Самостоятельные устройства и элементы систем, использующие интересующий нас эффект для измерения магнитоэлектрических величин, называют датчиками Холла. Их делят на две большие группы: аналоговые и цифровые. Аналоговые датчики очень просты и представляют собой, как правило, изолированный источник магнитного поля, действие которого на проводник напрямую зависит от расстояния и полярности. Такие датчики служат для преобразования магнитной индукции в разность потенциалов.
Они необходимы для измерения магнитных полей. Если индукция поля превышает заданный порог срабатывания датчика, то он формирует цифровой сигнал «1», в противном случае значение сигнала – «0». Ввиду наличия «слепых зон», в которых индукция слишком мала для срабатывания датчика, его применение не всегда целесообразно. Цифровые датчики холла делят на:
- униполярные — генерируют выходной сигнал в магнитном поле любой полярности, отключаются при падении индукции;
- биполярные — переключают выходной сигнал с «1» на «0» при изменении полярности магнитного поля.
Датчики Холла встречаются в почти любой достаточно сложной электронике — от бесконтактных выключателей до смартфонов, от автомобильных двигателей до ионных двигателей космических кораблей. Способность реагировать на появление и изменение магнитных полей сделала устройство незаменимым в электронике и электромеханике, а отсутствие прямого физического взаимодействия обеспечило высокую надёжность и точность, износостойкость и долговечность датчиков.
Изготовление датчика тока на основе эффекта Холла
Если Вы обладаете хотя бы базовыми навыками в работе с электронными компонентами, то без особого труда сможете самостоятельно сконструировать датчик тока. С его помощью можно будет бесконтактно определять наличие электрического тока в проводнике. Вот полный перечень материалов и инструментов, которые Вам понадобятся:
- цифровой датчик Холла в «транзисторном» корпусе, например, A3144 или US1881;
- ферритовое кольцо внешним диаметром не менее 25 мм (можно купить в магазине радиодеталей или извлечь из старого блока питания от энергосберегающих ламп или ПК);
- электрический зажим типа «крокодил»;
- цианакрилатный клей;
- резистор и конденсатор номиналами соответственно 10 кОм и 0,1 мкФ;
- плата Arduino, макетная плата, провода — для временной макетной сборки;
- плата Arduino, припой, канифоль, паяльник, провода — для сборки навесным монтажом;
- ручной лобзик с набором пилок, надфили, наждачная бумага, кусочки резины или ветоши.
Разверните корпус датчика маркировкой к себе. Нумерация выводов слева направо классическая: 1, 2, 3. Между первой и второй ножкой установите керамический конденсатор ёмкостью 0,1 мкФ (100 нФ). Между первой и третьей ножкой установите резистор сопротивлением 10 кОм. Теперь подключим датчик к плате Arduino по такой схеме:
- «1» — к контакту 5V+;
- «2» — к контакту GND;
- «3» — к цифровому выходу.
Устанавливать кермачиеский конденсатор между первой и второй ножками необязательно, но рекомендуется для стабилизации входящего напряжения
Ферритовое кольцо аккуратно распилите пополам с помощью ручного лобзика. Материал твёрдый, но достаточно хрупкий, поэтому работать придётся осторожно. Полученные полукольца очистите от сколов и шероховатостей, после чего приклейте сбоку к «челюстям» зажима-крокодила так, чтобы в сжатом состоянии торцы полуколец едва касались друг друга. На один из торцов наклейте кусочек плотной толстой ткани или резины, на второй — корпус цифрового датчика Холла.
Теперь, поместив внутри разрезанного ферритового кольца проводник и пустив по нему электрический ток, вы сможете наблюдать появление входящего сигнала на плате Arduino.
На сегодняшний день классический эффект Холла полностью изучен и служит теоретической базой для более или менее сложных электронных устройств. Ведутся исследования частных разновидностей эффекта Холла, в том числе поиск способов их использования в электрических, жидко- и газотопливных двигателях нового поколения.
Понятие и применение эффекта Холла
Эффект Холла был обнаружен Эдвином Холлом в 1879 году, но прошло много лет, прежде чем технологическое развитие позволило интегральным схемам в полной мере воспользоваться этим явлением. Сегодня микросхемы датчика Холла предлагают удобный способ для достижения точных измерений тока, которые обеспечивают электрическую изоляцию между путем измеряемого тока и измерительной цепью.
От Лоренца к Холлу
Эффект Холла является продолжением силы Лоренца, которая описывает силу, действующую на заряженные частицы – такие как электрон – движущиеся в магнитном поле. Если магнитное поле направлено перпендикулярно направлению движения электронов, на электрон действует сила, которая перпендикулярна и направлению движения, и направлению магнитного поля.
Эффект Холла относится к ситуации, в которой сила Лоренца действует на электроны, движущиеся в проводнике, так что разница потенциалов – или другими словами, напряжение – возникает между двумя сторонами проводника.
Следует отметить, что стрелки на втором рисунке показывают направления протекания обычного тока, а это означает, что электроны двигаются в противоположном направлении. Направление силы Лоренца определяется правилом правой руки, учитывающим направление движения электрона относительно магнитного поля. На первом рисунке электрон движется вправо, а сила Лоренца направлена вверх. На втором рисунке электроны движутся влево, а сила Лоренца направлена вниз, и, таким образом, отрицательный заряд накапливается на нижней стороне проводника. Результатом является разность потенциалом, которая возникает между верхней и нижней кромками проводника, с верхним краем более положительным по сравнению с нижним. Эта разность потенциалов называется напряжением Холла:
Эта формула, которая применяется к токопроводящей пластине, говорит нам, что напряжение Холла зависит от величины тока (I), протекающего через проводник, от магнитной индукции (B), от элементарного заряда электрона (e), количества электронов в единице объема (ρ) и от толщины пластины (t).
Использование эффекта Холла
Напряжения, генерируемые с помощью эффекта Холла малы по отношению к воздействиям шума, смещения и температуры, которые, как правило, влияют на схему, и, таким образом, реальные датчики на основе эффекта Холла не были широко распространены до появления полупроводниковой технологии, позволившей создание компонентов с высокой степенью интеграции, которые включали в себя и элемент Холла, и дополнительную схему, необходимую для усиления напряжения Холла. Тем не менее, датчики на основе эффекта Холла ограничены в своей способности измерять небольшие токи. Например, чувствительность ACS712 от Allegro MicroSystems составляет 185 мВ/А. Это означает, что ток 10 мА создаст выходное напряжение только 1,85 мВ. Это напряжение может быть приемлемым, если у схемы низкий уровень шума, но, если в цепь протекания тока включить резистор 2 Ом, в результате можно получить напряжение 20 мВ, что значительно лучше.
Эффект Холла используется в различных датчиках; устройства, основанные на относительно простой связи между током, магнитным полем и напряжением, могут использоваться для измерения положения, скорости и напряженности магнитного поля. В данной статье мы сосредоточим внимание на устройствах, которые измеряют ток через напряжение Холла, генерируемое, когда магнитное поле, создаваемое измеряемым током, концентрируется в элементе датчика Холла.
Достоинства и недостатки
Характеристики у разных датчиков тока на основе эффекта Холла сильно отличаются, поэтому трудно суммировать достоинства и недостатки использования эффекта Холла относительно другого распространенного способа измерения тока; а именно, вставки прецизионного резистора в цепь протекания тока и измерения появившегося на нем падения напряжения с помощью дифференциального усилителя. В целом, датчики Холла ценятся за «невлияние» и обеспечение электрической изоляции между цепью протекания тока и измерительной цепью. Эти устройства рассматриваются как не оказывающие влияния потому, что в цепь протекания тока не вставляется какого-либо существенного сопротивления, и, таким образом, схема при проведении измерений ведет себя так же, как если бы датчика не было вовсе. Дополнительным преимуществом является то, что датчиком рассеивается минимальная мощность; это особенно важно при измерении больших токов.
Что касается точности, доступные в настоящее время датчики Холла могут достичь минимальной ошибки в 1%. Хорошо продуманный датчик на основе резистора может дать лучший результат, но одного процента, как правило, хватает при работе с большими токами/напряжениями, где и подходит использование датчиков Холла.
Недостатки датчиков Холла включают в себя ограниченный диапазон частот и высокую стоимость. ACS712 работает до 80 кГц, а диапазон Melexis MLX91208, который позиционируется, как «широкополосный», ограничивается верхней границей 250 кГц. Резистивный датчик тока с высокоскоростным усилителем, с другой стороны, может хорошо работать и мегагерцовом диапазоне. Кроме того, как обсуждалось выше, эффект Холла по своей природе имеет ограничение в отношении измерения малых токов.
Изоляция
Одно из главных преимуществ датчиков Холла заключается в электрической изоляции, которую в контексте проектирования схем и систем называют гальванической развязкой. Принцип гальванической развязки используется всякий раз, когда проект требует, чтобы две схемы связывались таким способом, который предотвращает любую возможность протекания между ними электрического тока. Простой пример, когда цифровой сигнал передается через оптоизолятор, который преобразует импульсы напряжения в импульсы света и таким образом передает данные оптическим способом, а не электрическим. Одной из основных причин для реализации гальванической развязки является предотвращение проблем, связанных с земляными контурами:
Основные принципы проектирования схем предполагают, что взаимосвязанные компоненты совместно используют общую точку земли, на которой предполагается 0 В. В реальной жизни, однако, «земля» состоит из проводников, имеющих ненулевое сопротивление, и эти проводники служат в качестве обратного пути протекания тока от схемы назад к источнику питания. Закон Ома напоминает нам, что ток и сопротивление дадут напряжение, и это падение напряжения в обратном пути означает, что «земля» в одной части схемы не точно такая же по потенциалу, как «земля» в другой части схемы. Эта разница в потенциалах земли может привести к проблемам, начиная от незначительных до катастрофических.
Для предотвращения протекания постоянного тока между двумя схемами используется гальваническая развязка, позволяющая успешно общаться схемам с различными потенциалами земли. Это особенно актуально для измерения токов: низковольтный датчик и обрабатывающая цепь могут понадобиться для контроля больших, изменяющихся в больших пределах токов, например, в цепи привода двигателя. Эти большие, быстро изменяющиеся токи приведут к значительным колебаниям напряжения в цепи обратного пути протекания тока. Датчик Холла позволяет системе контролировать ток привода и защитить схему высокоточного датчика от этих вредных колебаний земли.
Синфазное напряжение
Другое важное применение датчиков Холла заключается в измерении токов при работе с высокими напряжениями. В схеме резистивного датчика тока дифференциальный усилитель измеряет разницу между напряжениями на одной стороне резистора и на другой. Проблема возникает, когда эти напряжения велики по сравнению с потенциалом земли:
Реальные усилители имеют ограниченный «диапазон синфазности», что означает, что устройство не будет функционировать должным образом, разница между входными напряжениями мала, и очень велика разница между ними и землей. Диапазоны синфазных входных напряжений токоизмерительных усилителей, как правило, не выходят за пределы 80 или 100 В. С другой стороны, датчики Холла могут преобразовать ток в напряжение без связи с потенциалом земли в измеряемой цепи. Следовательно, пока напряжение не достаточно велико, чтобы вызвать физическое повреждение, синфазное напряжение не влияет на работу датчика Холла.
Изучение эффекта холла
Цель работы: Измерение холловской разности потенциалов в полупроводниковой пластине и определение концентрации, подвижности и знака носителей заряда, участвующих в токе.
Введение
Эффект Холла – это возникновение поперечной разности потенциалов при пропускании тока через металлическую или полупроводниковую пластинку, помещенную в магнитное поле, таким образом, чтобы вектор индукции магнитного поля () было направлено перпендикулярно вектору плотности тока ().
C помощью эффекта Холла (1879 г.) можно измерить зависимость плотности тока от концентрации свободных электронов.
Сущность эффекта Холла, на основе классической электронной теории, заключается в следующем. Если проводник, по которому течет ток, поместить в магнитное поле, то на заряды движущиеся в магнитном поле действует сила Лоренца, направленная перпендикулярно их движению. Если, например, электроны движутся в прямоугольном проводнике на рис. 1 влево, то направленное в плоскость чертежа магнитное поле будет действовать силой, направленной вверх. В результат электроны будут двигаться вверх, а положительные заряды к нижнейповерхности проводника.
Вследствие этого между поверхностями проводника А и В возникает разность потенциалов. заряда.
Рис. 1
Она будет увеличиваться до тех пор, пока не наступит равновесное состояние, при котором сила холловского электрического поля станет равной магнитной силе Лоренца:
[](1)
Так как магнитное поле направлено перпендикулярно к линиям тока, то напряженность поперечного электрического поля равна по абсолютной величине
(2)
Тогда разность потенциалов поперечного электрического поля между поверхностями проводника
(3)
где d-расстояние между поверхностями А и В проводника.
Средняя скорость направленного движения носителей тока связана с плотностью тока j соотношением j = nqV , где n- концентрация носителей заряда(число носителей в единице объема, q-заряд носителя). Следовательно,
(4)
Выразив плотность тока через силу тока I:
(5)
(b-толщина пластины) и подставив выражения (5) и (4) в (3), получим
, (6)
где . (7)
Коэффициент называют постоянной Холла.
Формула (7) получена без учёта закона распределения электронов по скоростям. Более точный расчет с учетом закона распределения носителей по скоростям в рамках классической статистики приводит к выражению для постоянной Холла
В полупроводниках с атомной решеткой, например для кремния,
поэтому
Для полупроводников с ионной связью, например для интерметаллического соединения арсенида галлия А = 1. В этом случае применима формула (7).
Соотношение (6) позволяет определить постоянную Холла и концентрацию носителей заряда n, в образце из опытных данных:
(9)
Если известно, то, измеряя и I, можно найти . Этот способ измеренияиспользуется в технике (датчики Холла).
Важной характеристикой полупроводника является подвижность в нем носителей заряда, под которой подразумевается средняя скорость, приобретаемая носителем в поле, напряженность которого равна единице. Если в поле напряженностью носители приобретают скорость, то подвижность ихu, равна:
(10)
Используя связь между плотностью тока, напряженностью электрического поля и проводимостью и учитывая (4) и(10), можно выразить подвижность через проводимость σ и концентрацию носителей заряда:
(11)
Из соотношений (7) и (11) следует:
Таким образом, для определения подвижности носителей, необходимо измерить и σ.
Из (7) следует, что знак постоянной Холла совпадает со знаком носителей заряда. У полупроводников постоянная Холла может быть отрицательной и положительной, так как существует два типа проводимости. У полупроводников с электронной проводимостью( полупроводников n-типа) знак постоянной Холла отрицателен. Если электропроводимость полупроводников осуществляется положительными зарядами или так называемыми «дырками», то знак постоянной Холла положителен. Такие полупроводники называются дырочными (полупроводниками р-типа). Если в полупроводнике одновременно осуществляется оба типа проводимости, то по знаку постоянной Холла можно судить о том, какой из них является преобладающими.
Зависимость знака постоянной Холла от знака носителей заряда, создающих в данном веществе можно понять из рис.2, на котором демонстрируется эффект Холла для образцов с положительными и отрицательными носителями.
аправление силы Лоренца изменяется на противоположное как при изменении направления движения зарядов, так и при изменении их знака.
Рис. 2
Следовательно, при одинаковом направлении тока и магнитной индукции ()сила Лоренца, действующая на положительные и отрицательные носители, имеет одинаковое направление.
Метод измерения и описание аппаратуры
Изучение эффекта Холла в полупроводниках проводится на учебном приборе, общий вид и электрическая схема которого представлены соответственно на рис. 3 и 4 Исследуемый образец О (см. рис. 3), представляющий собой тонкий пластинку кремния , вмонтирован в прозрачный диэлектрический держатель D, который можно поворачивать на 180° с помощью рукоятки Р1 в поле постоянного магнита Цилиндрический экран Э, изготовленный из ферромагнетика, который можно перемещать с помощью рукоятки Р2, позволяет производить магнитную экранировку образца. Блок питания Б, (см. рис. 4) и включается тумблером Т, служит для создания продольного тока через образец. Величина тока регулируется потенциометром Пи измеряется миллиамперметром, а его направление изменяется, с помощью переключателя П.
Рис. 4
Микроамперметр А с симметричной относительно нуля шкалой, включаемый последовательно с сопротивлением Rили Rс помощью переключателя Пслужит для определения тока, вызванного ЭДС Холла. Все приборы и приспособления закреплены на панели, в которую вмонтированы также клеммы 1~12, с помощью которых осуществляется сборка цепи питания исследуемого образца и цепи измерения ЭДС Холла. В панели имеется окно для наблюдения за взаимным расположением магнитного экрана, исследуемого образца и постоянного „магнита, южный и северный полюса которого обозначены буквами S и N. Значения магнитной индукции поля постоянного магнита, удельной проводимости и толщины исследуемого образца, величины сопротивлений Rи R. размещены на лабораторном стенде.
Электрическая схема измерительной установки размещена на панели установки.
В данной работе исследуется ЭДС Холла (поперечная разность потенциалов) и зависимости от величины протекающего по образцу продольного тока I при постоянном значении внешнего магнитного поля. Измерение ЭДС Холла проводится при различных углах между векторами В и j т.е. между направлениями магнитного поля и направлением тока через образец.
Для определения ЭДС Холла используют метод, основанный на измерении с помощью микроамперметра μA, нагружаемого на два различных сопротивления R1 и R2 двух токов i1 и i2 в холловской цепи. Расчет ЭДС Холла производится по формуле
(15)
Формула получается из решения уравнения Кирхгофа для холловской цепи
, (14)
где R —нагрузочное сопротивление (Rили R);
R- контактное сопротивление;
R- сопротивление образца между холловскими электродами;
R- сопротивление микроамперметра.
Подставляя вместо R значения R1 и R2, получим систему двух уравнении:
;
. (15)
Если выбирать значения токов i1 и i2 достаточно близкими друг к другу, то контактное сопротивление RK можно считать постоянным при измерениях. Решая систему уравнений (15), получим расчетную формулу (13).
Для исключения паразитных ЭДС, возникающих из-за наличия асимметрии холловcких контактов и температурного градиента и образце, окончательное значение ЭДС Холла рассчитывается как среднее арифметическое из четырех измерений: двух при разном направлении продольного тока и двух при разном направлении магнитного поля.
Как используется эффект Холла: принципы явления и способы применения
Это явление было открыто в конце 19-го века. Эффект Холла (ЭХ) получил специфическое название по фамилии ученого, который зарегистрировал изменение потенциалов на золотой пластине в ходе экспериментов с электричеством и постоянными магнитами. В настоящее время основные принципы открытия применяют для изготовления датчиков. С их помощью измеряют силу тока без разрыва цепи.
Современные датчики скорости вращения, созданные на основе эффекта Холла
Что такое эффект Холла
Для повторения классического эксперимента не обязательно применение ценных металлов. Чтобы зарегистрировать возникновение разницы потенциалов, вполне достаточно чувствительности серийного лабораторного вольтметра. Сильный однородный магнитный поток обеспечить несложно, если подобрать подходящие изделия из неодимовых сплавов.
Что такое Холла эффект, можно выяснить с помощью наглядного эксперимента
Если расположить проводник (пластину) в магнитном поле, как показано на рисунке, на торцах будет измеряться напряжение. Серией элементарных опытов можно обнаружить закономерность изменения показаний при увеличении (уменьшении) силы тока в рабочей цепи.
На этом принципе основано практическое применение эффекта Холла (ЭХ). По этой схеме выполняют измерение электрических параметров, не нарушая целостность токопроводящих цепей. Бесконтактный метод позволяет надежно изолировать датчик от неблагоприятных внешних воздействий. Такие методики помогают продлить долговечность оборудования, которое эксплуатируют в сложных условиях. В частности, подобные решения применяют в конструкциях автомобильной и авиационной техники.
Изоляция
Одно из главных преимуществ датчиков Холла заключается в электрической изоляции, которую в контексте проектирования схем и систем называют гальванической развязкой. Принцип гальванической развязки используется всякий раз, когда проект требует, чтобы две схемы связывались таким способом, который предотвращает любую возможность протекания между ними электрического тока. Простой пример, когда цифровой сигнал передается через оптоизолятор, который преобразует импульсы напряжения в импульсы света и таким образом передает данные оптическим способом, а не электрическим. Одной из основных причин для реализации гальванической развязки является предотвращение проблем, связанных с земляными контурами:
Основные принципы проектирования схем предполагают, что взаимосвязанные компоненты совместно используют общую точку земли, на которой предполагается 0 В. В реальной жизни, однако, «земля» состоит из проводников, имеющих ненулевое сопротивление, и эти проводники служат в качестве обратного пути протекания тока от схемы назад к источнику питания. Закон Ома напоминает нам, что ток и сопротивление дадут напряжение, и это падение напряжения в обратном пути означает, что «земля» в одной части схемы не точно такая же по потенциалу, как «земля» в другой части схемы. Эта разница в потенциалах земли может привести к проблемам, начиная от незначительных до катастрофических.
Для предотвращения протекания постоянного тока между двумя схемами используется гальваническая развязка, позволяющая успешно общаться схемам с различными потенциалами земли. Это особенно актуально для измерения токов: низковольтный датчик и обрабатывающая цепь могут понадобиться для контроля больших, изменяющихся в больших пределах токов, например, в цепи привода двигателя. Эти большие, быстро изменяющиеся токи приведут к значительным колебаниям напряжения в цепи обратного пути протекания тока. Датчик Холла позволяет системе контролировать ток привода и защитить схему высокоточного датчика от этих вредных колебаний земли.
От Лоренца к Холлу
Что является источником магнитного поля
Для лучшего понимания физических процессов следует вспомнить базовые определения силы Лоренца. Они описывают воздействие на движущийся заряд магнитного поля. При перпендикулярном расположении силовых линий и вектора скорости электрон будет отклоняться вертикально вверх.
Сила Лоренца и эффект Холла: пояснение основных зависимостей
На второй части рисунка показано, каким образом сила Лоренца воздействует на поток электронов. Их движение в определенном направлении обеспечивает подключенный источник постоянного тока. В соответствующих точках плоского проводника несложно измерить разницу потенциалов (Uх).
К сведению. Перемещение электронов противоположно движению тока, отмеченного на картинке стрелками.
Для определения полярности потенциала пользуются известным правилом правой руки. Разместив ладонь в соответствии с направлением движения электронов, положением большого пальца определяют направление воздействия силы Лоренца. В рассматриваемом примере она перемещает отрицательные заряды на пластине вниз. Соответствующий знак «-» отмечен на картинке.
Итоги
Эффект Холла находит свое применение в самых разнообразных областях промышленности и является довольно важным открытием, необходимым для функционирования множества современных приборов, без которых сейчас невозможно обойтись. А также этот эффект содержит много составных компонентов в виде квантового э-та Холла или его аномалии, спинового э-та и магнетосопротивления. По существу он базируется на разности, возникающей в потенциалах, находящихся в поперечном положении и подвергающихся воздействию тока с постоянной величиной на проводник в сильном м. п.
В классическом варианте эффект холла это перемещение в определенном направлении зарядов при воздействии магнитного поля. Ниже представлены особенности разных видов явления, которые основаны на иных принципах.
Аномальный
В этом случае главная особенность заключается в том, что разница потенциалов регистрируется без воздействия магнитного поля. Подобные явления наблюдают в изделиях с намагниченными свойствами.
Квантовый
Эта разновидность ЭХ определяется появлением квантовых характеристик сопротивления при существенном снижении температуры образца. Экспериментально подтверждена зависимость проводимости от силовых параметров магнитного поля при сохранении постоянства концентрации носителей зарядов.
Дробный
Такое явление – разновидность рассмотренного выше квантового ЭХ. Его зарегистрировали в ходе последовательного увеличения магнитной индукции.
Спиновый
В этом варианте для экспериментов используют проводники с немагнитными характеристиками. Внешнее поле отсутствует. Наблюдают смещение зарядов в противоположных направлениях.
Разновидности явления
По мере исследования эффекта был обнаружен ряд особенностей появления электрического поля, отличающий от классического понимания. Так, учёными были выявлены факторы, приводящие к появлению напряжения без пропускания через пластинку тока. Такие явления получили название:
- аномальное;
- квантовое;
- спиновое.
Для аномального эффекта необходимым условием является нарушение T-симметрии, то есть уравнений, описывающих физические законы при обращении времени. Наиболее часто этот эффект наблюдается в материалах, имеющих остаточную намагниченность (ферромагнетики).
Квантовое же отклонение возникает в квазидвумерном электронном газе, где пренебрегают кулоновским взаимодействием. В нём носители заряда обладают слабой связью с ионами кристаллической решётки. В такой системе работают законы квантовых теорий.
При этом чем сильнее магнитное поле, тем более выражено дробное явление Холла, связанное с трансформированием структуры всего электронного газа.
В 1971 году учёные Дьяконов и Перель, изучающие механизм спиновой релаксации, обнаружили, что перпендикулярно направлению линий электромагнитного поля наблюдается отклонение носителей зарядов, имеющих противоположные спины. Этот эффект был связан со спин-гальваническим рассеянием и взаимодействием между спиновыми и орбитальными магнитными моментам.
Вам это будет интересно Устройство и принцип действия амперметра для измерения тока
Формулы и расчёты
Закон полного тока
Так как в классическом определении эффект Холла – это перемещение зарядов под воздействием внешнего магнитного поля, можно сделать несколько выводов:
- образующееся в контрольных точках напряжение (Uх) будет прямо пропорционально току (I);
- аналогичная зависимость определена силовыми параметрами поля, которые выражают через вектор (В) магнитной индукции;
- существенное значение имеет размерность проводника.
Какой получится потенциал при определенных исходных параметрах? Ниже показан алгоритм преобразований с итоговой формулой для расчетов.
Для определения силы Лоренца (Fл) используют выражение:
где:
- q – элементарный заряд;
- v – скорость его перемещения.
При подключении пластины по схеме основного эксперимента при постоянной силе тока разница потенциалов стабилизируется. После этого созданное электрическое поле будет воздействовать на заряды с определенной силой Fэ = q * E, где E – это соответствующая напряженность.
В этом состоянии Fл = Fэ, поэтому значение правых частей формул также будет равным: q*v*B = q * E. Следовательно E = v*B.
Плотность тока (j) определяется выражением:
j = q * v *n, где n – это число заряженных частиц в единице объема.
После преобразования выражения расчет для скорости подставляют в формулу напряженности:
Разницу потенциалов несложно вычислить по напряженности и расстоянию (d) между контрольными точками (гранями пластины):
Uх = E * d = d * (j/q*n) * B = (1/q*n) * d * j * B.
Часть выражения (1/q*n) = R – это постоянная Холла. Она определяет обратную зависимость от суммарного заряда частиц.
Подставив коэффициент Холла в последнее выражение, можно записать итоговую формулу следующим образом:
Достоинства и недостатки
Основное преимущество датчиков, созданных на основе данного эффекта, – изолированность цепей (измерения и токопроводящей). Кроме отмеченной выше хорошей защищенности от внешней среды, такое конструкторское решение обеспечивает отсутствие обратного влияния на основную электрическую схему. Подразумевается возможность оперативного изменения места измерения. Дополнительный плюс – минимальная мощность потребления.
Недостатком является ограниченная точность (1-2% в лучших образцах). Применение резистивного аналога в комплекте с дифференциальным усилителем позволяет улучшить результат с меньшими затратами. Однако в этом случае предполагаются монтаж контрольного компонента в рабочую цепь и сравнительное увеличение потребляемой мощности.
Также следует отметить ограниченный частотный диапазон датчиков Холла. Серийные модели функционируют корректно до 70-90 кГц. Более дорогие изделия широкополосной категории рассчитаны на применение до уровня 240-260 кГц. Нужно учитывать низкую чувствительность, которая вызывает затруднения при работе с малыми токами.
Применение
С учетом небольшой разницы потенциалов понятно типовое решение с подключением выводов датчика к операционному усилителю. Далее сигнал поступает на индикаторное устройство. Преобразование в цифровую форму выполняют с помощью триггера. При соответствующей настройке схема срабатывает, если зарегистрирован определенный уровень магнитного поля.
Перечисленные возможности применяют для контроля положения ротора или частоты вращения электромотора. В нужных местах закрепляют постоянные магниты и датчик.
Датчик Холла в системе бесконтактного зажигания автомобиля
В проводниках и полупроводниках
Физика эффекта Холла (воздействие магнитного поля на электроны) подробно рассмотрена выше. Однако при работе с полупроводниками дополнительно учитывают поведение дырок. В частности, определяют концентрацию и подвижность заряженных частиц, фотопроводимость материалов. Измерение полярности потенциалов позволяет выяснить тип полупроводника (p или n).
Датчики Холла
Аналоговые изделия функционируют на основе базовых принципов явления. По изменению потенциала определяют силу тока. Цифровые модели срабатывают при определенном уровне индукции. Единица на выходе сигнализирует о наличии магнитного поля.
Изготовление датчика тока на основе эффекта Холла
Для создания функционального устройства нужно приобрести датчик в типовом исполнении («транзисторный» корпус с тремя выводами). Подходящее по размерам ферритовое кольцо аккуратно распиливают пополам. Полукольца подсоединяют к типовому зажиму типа «крокодил». К торцам приклеивают датчик и демпфирующую прокладку.
Самодельные клещи
После подключения через усилитель к мультиметру можно измерять ток в проводниках без разрыва цепей.