Температурный шов в железобетонных конструкциях

Деформационный шов

Подскажите как считать расстояние между постоянными деформационными швами в монолитных конструкциях, в СНиПе обэтом упоминается вскользь:”В конструкциях зданий и сооружений следует предусматривать их разрезку постоянными и временными температурно-усадочными швами, расстояния между которыми назначают в зависимости от климатических условий, конструктивных особенностей сооружения, последовательности производства работ и т.п.”, а конкретных методик для расчет нет.

Это табличка из пособия к СНиП по ж.б. констукцим. И про температурно-усадочные швы. “Осадочные швы, а также температурно-усадочные швы в сплошных бетонных и железобетонных конструкциях следует осуществлять сквозными, разрезая конструкцию до подошвы фундамента. Температурно-усадочные швы в железобетонных каркасах осуществляются посредством применения двойных колонн с доведением шва до верха фундамента.” Хотелось бы знать где прописано про деформационные швы. Понятно, что они появляются когда есть блоки здания разной этажности или при строительстве в несколько очередей. Если никаких таких дополнительных условий нет, как быть в таком случае. Судя по цитате из СНиПа можно разрезать здание, предположем, на 3 ТЕМПЕРАТУРНО-УСАДОЧНЫХ шва, а плиту сделать единой, не разрезая? Конструктивно не очень красиво получится. Как вы делаете в таком случае? Как объяснить архитектору что и плиту нужно разрезать, тем самым несколько увеличив расстояние в осях?

Хочу быть фотографом 🙂

Нет необходимости разрезать плиту либо ленту фундамента, если нет на то причин (разные грунты, разновысотные части зданий, строительство очередями и т.п..)

т.е. если здание 80 м- делим его на температурные блоки, а плиту можно так оставить 80 м? Подскажите где можно посмотреть предельные размеры захваток бетонирования. Плиту такого размера я думаю нельзя бетонировать одним махом из-за усадочных напряжений, или я ошибаюсь?

Хочу быть фотографом 🙂

Это уже совсем другое.. я говорил о постоянных осадочных швах.
Сейчас у меня лежит проект 10-секционного дома, там свайная лента.. так никаких швов нигде не показано, а общая длина (дом ломаный) далеко за 200 м..

Это я понял, это уже другой вопрос(по поводу усадочных напряжений). Исходя из чего можно назначить размеры захваток? Или может принять какие-нибудь мероприятия?

Хочу быть фотографом 🙂

Постоянно эта тема всплывает.. А разве в снипе по несущим и ограждающим конструкциям ничего не написано.

В СНиПе написано
2.13. Поверхность рабочих швов, устраиваемых при укладке бетонной смеси с перерывами, должна быть перпендикулярна оси бетонируемых колонн и балок, поверхности плит и стен. Возобновление бетонирования допускается производить по достижении бетоном прочности не менее 1,5 МПа. Рабочие швы по согласованию с проектной организацией допускается устраивать при бетонировании:

колонн – на отметке верха фундамента, низа прогонов, балок и подкрановых консолей, верха подкрановых балок, низа капителей колонн;

балок больших размеров, монолитно соединенных с плитами – на 20 – 30 мм ниже отметки нижней поверхности плиты, а при наличии в плите вутов – на отметке низа вута плиты;

плоских плит – в любом месте параллельно меньшей стороне плиты;

ребристых перекрытий – в направлении, параллельном второстепенным балкам;

отдельных балок – в пределах средней трети пролета балок, в направлении, параллельном главным балкам (прогонам) в пределах двух средних четвертей пролета прогонов и плит;

массивов, арок, сводов, резервуаров, бункеров, гидротехнических сооружений, мостов и других сложных инженерных сооружений и конструкций – в местах, указанных в проектах.

И все. А про расстояния между этмми швами не сказано, а меня как раз это и интересует, через какие максимальновозможные расстояния делать перерывы. Просто я видел как турецкие ребята залили плиту 70 м длиной, 80 см толщиной за 1 день – она вся была покрыта волосяными трещинами, я предположил, что это усадочные напряжения.

Не надо путать захватку и границы зон бетонирования. Размер захватки определяется логикой работы кранов, границы зон бетонирования- возможностями одновременной заливки.

Не надо путать захватку и границы зон бетонирования. Размер захватки определяется логикой работы кранов, границы зон бетонирования- возможностями одновременной заливки.

Монолитное здание 170 м длиной, 5 секций, встал вопрос сколько делать деформационных швов, где это можно посмотреть?

Tony_Chu, сколько секций, столько и швов (-1).

Пособие к старому СНиП п.5.121: “Расстояния между температурно-усадочными швами в бетонных фундаментах и стенах подвалов допускается принимать в соответствии с расстояниями между швами, принятыми для вышележащих конструкций.”

оттуда же п.1.19: “Расстояния между температурно-усадочными швами, как правило, должны устанавливаться расчетом. Расчет допускается не производить, если при расчетной температуре наружного воздуха минус 40 °С и выше расстояние между температурно-усадочными швами не превышает значений, приведенных в табл. 3.”

А вообще, как наваждение, точно помню видел пункт в новых нормах, что расстояние теперь определяется только по расчету.. глюк или документ подправили?

Tony_Chu,
А вообще, как наваждение, точно помню видел пункт в новых нормах, что расстояние теперь определяется только по расчету.. глюк или документ подправили?

Тоже обратил на это внимание
Документ то не подправили а новый выпустили
Считаю что можна принимать расстояния между температурными швами
по старых нормах.

Tony_Chu
170/5=34 м
секция-шов
если посчитаете что можно больше-принимайте больше.

И все же, на счет разделения фундаментной плиты на темп. деф. блоки
Каркас монолитный (длина здания 65 метров) разбиваем на 2 блока, по деф. шву спаренные колонны, а как с плитой быть? надо шов ТЕМПЕРАТУРНЫЙ устраивать или нет? Или заделывай спарнные колонны шва в единую плиту фундамента? и как со стенами подземными (монолит) быть?

Serg666xxx
Посмотреть профиль
Найти ещё сообщения от Serg666xxx

Геотехника. Теория и практика

По вопросу устройства температурно-усадочных и осадочных швов рекомендую так-же обратиться к п.1.15-1.18 “Пособие по проектированию жилых зданий. Вып.3 Конструкции жилых зданий (к СНиП 2.08.01-85) – разработка ЦНИИЭП жилища, 1989 г. (есть его элетронные версии). Приложении 1 Пособия приведена методика определения усилий в протяженных зданиях от температурных и усадочных воздействий.
На одном из наших объектов, который в 2006 г. проектировал ЦНИИЭП жилища (раздел КЖ) – монолитная фундаментная плита толщиной 2,2 м размером 120х65 м, без осадочных и температурных швов. Предусматривались только рабочие швы бетонирования (по захваткам). В монолитных стенах поземной части здания так-же были только техологические швы.

Продажа навыков и умений

Если исходить их того, что фундаментная плита находится под землей, то температурных деформаций у нее происходить не будет.

Геотехника. Теория и практика

Если исходить их того, что фундаментная плита находится под землей, то температурных деформаций у нее происходить не будет.

Абсолютно согласен, но есть один нъю-анс – температурные напряжения, в том числе в фундаменте в первую очередь зависят от градиента температуры , поэтому необходимо различать период эксплуатации здания и период возведения конструкций здания. В период эксплуатации перепад температур в плите (зима-лето, день-ночь) значительно меньше, чем в период возведения. Поэтому на период эксплуатации здания этот вопрос, как правило не стоит, а в период устройства ( в данном случае фундаментной плиты) вопрос не снимается, поэтому для уменьшения температурных напряжений (уточним – в том числе для этого) предусматриваются рабочие швы бетонирования. Если-же бетонировать без швов, в особенности протяженные конструкции, то разница температур между ранее забетонированными участками и бетонируемым в сплошной конструкции может быть очень значительной. Швы бетонирования снимают эту проблему. Все это должно быть прописано в ППР.

Продажа навыков и умений

Я пишу такое примечание:
Бетонирование ростверка выполнять с устройством временных рабочих швов с выпусками арматуры по проекту (для снижения температурных и усадочных усилий в ростверках). Расстояние между швами принимать не более 40 метров. Дальнейшее бетонирование производить через 28 суток после устройства шва. В случае необходимости дальнейшего бетонирования сразу после устройства шва следует начинать бетонирование следующего участка на расстоянии 1.5. 2м от забетонированного с устройством выпусков арматуры из обоих участков по проекту. После набора проектной прочности бетона обоих участков следует сварить выпуски арматуры между собой по ГОСТ 14098-91 соединение С22-Ру, и замонолитить пропущенный участок бетоном по проекту.
Можете покритковать.

И вообще давно хочу поднять тему стандартных примечаний на все случаи жизни. таких много, все пишут немного по-разному.

Геотехника. Теория и практика

Первое замечание – нет понятия “временный” рабочий шов !
Второе – абсолютно не согласен, что бетонирование на последующей захватке необходимо начинать только после 28 суток (это надо в том случае, если предполагается передать всю расчетную нагрузку через 28 суток) , начинайте через одну захватку – можете параллельно (если силенок хватит), а потом вернетесь к пропущенной между ними – нет вопросов !!
Третье – по поводу 40 м. – не многовато-ли просчитайте, сможите ли обеспечить интенсивность поодачи бетнона (м3/час), чтобы обеспечить непрерывное бетонирование – здесь очень много вопросов чисто практических (мощность БРУ, к-во миксеров, и т.д. и т.п – целая наука!) – не проработаете – потом наклонные швы будете зубами грызть! – “Лучше меньше, да лучше !” (об этом было сказано еще сто лет назад!)
Четвертое в швах бетонирования (на упомянутом выше объекте) заложили дополнительной арматуры – выше крыши ! Не применяйте в рабочих швах фундаментных плит стыки на сварке ! – не подлезешь, не проваришь ! – тоько внахлест!
Пятое – необходимо обеспечить качество рабочего шва (лучше, чтобы он был вертикальным), с грамотно выполненными отсечками.
Шестое – не надо на расстоянии 1,5 – 2 м – делайте через захватку ( при таком шаге точно нарветесь на неприятность!)
В порядке дополнения – рабочие швы бетонирования должна показывать на рабочке проектная организация (или согласовывать) – что бы не попасть швом в ту зону, где он в расчетной схеме по определению не может быть ! – ответственность в этом случае несет проектная организация ( не подумали, проглядели !). Страшного ничего не будет, но заказчика будут каждый раз пугать эти постоянно то открывающиеся, то закрывающиеся трещины 👿
Так-что не торопитесь писать примечание ! – подумайте над этим вопросом вместе с подрядчиком, поднимите часть 3 СНиП , изучите этот вопрос.

Как сделать деформационный шов в железобетонных монолитных и сборных конструкциях

Деформационный шов в железобетонных конструкциях выполняется с целью снятия давления на элементы в зонах, где материал может деформироваться под воздействием различных негативных факторов.

Чаще всего изначальное состояние железобетона нарушается по причине сильных температурных скачков, при наличии очаговой усадки грунта, в местах с высокой сейсмической активностью, в других ситуациях, когда наблюдаются небезопасные нагрузки, существенно уменьшающие несущие функции монолита.

как делать деформационные швы

Что такое деформационный шов

Деформационные швы – это предусмотренное проектом деление конструкции здания на фрагменты в горизонтальной (вертикальной) плоскости, благодаря которому удается компенсировать напряжение в определенных зонах несущего каркаса. Если это напряжение не устранить, то могут существенно измениться геометрические размеры, положение, свойства железобетона.

Благодаря швам удается придать зданиям проектную величину упругой подвижности. Деформационные швы бывают разных видов в соответствии с типом напряжения, которое призваны компенсировать: сейсмические, осадочные, конструкционные, усадочные швы, температурные.

Когда выполняется деформационный шов, конструкция делится на отдельные блоки, придавая монолиту упругость и способность выдерживать серьезные нагрузки без деформации. Стыки герметизируются специальным изолирующим материалом, который должен быть гибким и стойким к разным воздействиям.

какими бывают деформационные швы

Визуально деформационный шов в монолитном железобетоне представляет собой разрезы в поверхности, делящие конструкцию на блоки определенной величины. У каждого шва есть задача, которую он призван выполнить. Усадочный шов делают в железобетонных стяжках для предупреждения образования трещин на поверхности при постепенном затвердевании и наборе прочности бетоном.

В таком случае швы делают прямолинейными, не допуская даже минимальных закруглений и поворотов. Расстояние между ними напрямую зависит от глубины, ширины стяжки, типа площадки (закрытая/открытая).

Из-за особенностей расположения и параметров конструкции в зданиях могут применяться комбинации разных видов швов, которые одновременно защищают сразу от нескольких причин возможной деформации. Особенно актуален такой подход при строительстве высоких протяженных зданий, с большим числом разных элементов и конструкций.

схема выполнения деформационных швов в доме из арболита

  • Размещение частей конструкции на грунте с разными свойствами
  • При выполнении пристроек к уже существующему зданию
  • Если отдельные части строения имеют разницу по высоте больше 10 метров
  • Все случаи, в которых можно ожидать неравномерной просадки фундамента

Наибольшие расстояния между деформационными швами в ЖБ конструкциях

Расчет на температурные показатели и усадку не осуществляется для конструкций стандартного типа с трещиностойкостью третьей категории с напряженными/ненапряженными изделиями, но при условии, что расстояние между швами меньше нормативных пределов. Деформационные швы могут быть горизонтальными и вертикальными.

  • Для каркасных конструкций из дерева и металла – 40 метров для наружных построек, 60 метров для отапливаемых
  • Сборные сплошные конструкции – 30 метров для неотапливаемых зданий и 50 метров для отапливаемых
  • Монолитные каркасные конструкции из тяжелых марок бетона – 30 и 50 метров соответственно
  • Каркасные монолитные конструкции из легкого бетона – 25 и 40 метров соответственно
  • Монолитные здания из твердых составов – 25 метров для неотапливаемых помещений и 40 для отапливаемых
  • Ячеистый бетон – 20 и 30 метров соответственно

Если возводится одноэтажное здание из армированного каркасного бетона, расстояние между швами можно увеличивать в среднем на 20% относительно значений в таблице. Табличные данные можно применять, когда создаются вертикальные связи в средине отделенного блока в каркасных зданиях. Такие связи размещаются по краям блока и при воздействии деформаций приближают работу каркаса к цельному сооружению аналогичного типа.

правила выполнения деформационных швов

  • Выполняются во всех зданиях с трещиностойкостью первой и второй категорий.
  • Проходят по всей высоте на здании, благодаря чему деформация на отдельных зонах конструкции проходит свободно. Швы могут проходит от вершины основания до начала крыши, деля стены и все перекрытия.
  • Ширина стандартного шва равна 2-3 сантиметрам, шов заполняется пропитанной толем либо смолой паклей, несколькими слоями рубероида, герметиком.
  • Монтаж парных балок на 2 колоннах гарантирует правильный температурный шов в сборных и монолитных конструкциях. В каркасных зданиях он комфортен при появления серьезных и динамических нагрузок на перекрытия.
  • Осадочный шов нужен при нахождении здания на разной высоте или грунте.
  • Температурно-усадочный шов нужен при соединении новой пристройки к старой конструкции.
  • Раздвижение пар колонн с выполнением опоры на отдельные основания, а также монтаж встречных балочных консолей дают возможность сделать качественный деформационный шов. Также часто между отдельными частями здания делают вкладной пролет из плит и балок.
  • В монолитных зданиях усадочный шов формируют так: от одной части сооружения конец балки опирается на консоль свободно, она является продолжением перекладины другой части конструкции. Элементы, которые соприкасаются, соединяются аккуратно, чтобы избежать трения, разрушающего консоли.

Как выполняются

Термический и усадочный (а также сейсмический и осадочный) типы швов могут совмещаться в конструкции – получается усадочно-температурный (и сейсмически-осадочный) шов. Первый проходит по ширине и длине здания от верхней части фундамента до кровли, второй же предполагает полное деление конструкции на независимые один от другого блоки.

В таком случае железобетонный короб делится на вертикальные швы шириной 2-3 сантиметра, заполненные гидрофобным упругим герметиком. Правильное размыкание может обеспечить монтаж в смежных областях соседних частей парных балок и колонн.

создание деформационных швов в железобетонных конструкциях

В постройках разной высоты и на разных грунтах даже при условии объединения вкладным пролетом делают осадочные швы. Температурное расширение в отмостке из армированного бетона компенсируют делением на двухметровые квадраты посредством монтажа в опалубке пропитанных битумом брусков из дерева. Примыкание опалубки к стенам должно быть подвижным и герметичным.

Бетонные полы деформируются, если их площадь превышает 30 квадратных метров, провоцируя распространение трещин. Поверхность стяжки режут на глубину четверти-половины высоты, чтобы материал разорвался под швами. Площадки стяжки могут быть размером до 6 метров и не только квадратными, но и с соотношением сторон 1:1.5. Стыки разных материалов, залитых в разное время стяжек выполняют демпферами.

устройство деформационного шва

Изоляционные швы отделяют стяжку от стен на всю высоту по периметру здания, их заполняют упругими материалами. Также изолируются от стяжки пола колонны, лестничные марши. Плиты перекрытий монолитного типа отделяются разрезами от несущего каркаса конструкции, оптимальная ширина высчитывается индивидуально.

Межэтажные перекрытия заливаются фрагментами определенного размера. Все пустоты заполняют герметиком, заделывают. Делятся по всей высоте на отдельные блоки и ленточные основания, что компенсирует напряжения и нагрузки.

Шаг разрезания фундамента: 30 метров на слабо- и 15 метров на пучинистых грунтах. Швы заполняют долговечными герметиками. Вертикальными конструкциями наружных/внутренних стен создаются горизонтальные сечения, делящие здание на отсеки. Высота отсека для внутренней стены – 30 метров, для фасадной – 20.

Читайте также:  Эффект Холла: в чём заключается явление, измерения датчиками, основанными на элементах Холла, формула расчетов

В такие размыкания каркаса монтируют завернутый дважды в толь шпунт, он забивается паклей, потом герметизируется глиной. Ширина шва может составлять от 3 миллиметров до 100 сантиметров.

  • Разрезы должны идти по осям колонн, стыковаться с углами швов, проходящих по периметру колонн.
  • Карты пола должны быть квадратной формы либо со сторонами 1:1.5, прямыми, без ответвлений. Чем меньше величина карты, тем меньше риск хаотичной деформации монолита.
  • В проездах/проходах швы делают на расстоянии, идентичном ширине стяжки (в случае, когда проход больше 3.6 метров, в центре можно сделать продольный шов).
  • Расстояние между швами на открытых площадках – максимум 3 метра по всем направлениям.
  • Деформационные швы выполняются с использованием формующих реек, в противном случае разрезы создают после завершающей обработки бетона.
  • Стандартные швы по стяжке нарезают блоками 6х6 метров в треть толщины слоя бетона.
  • Место расположения и число швов устанавливают, исходя из усадки бетона, коэффициента температурного расширения, вероятных деформаций мест сопряжения стен и пола, фундамента и колонн, и т.д.
  • Все швы обязательно герметизируются, исходя из условий эксплуатации и требований.
  • Могут использоваться специальные рельс-рейки, укладывающиеся в каркас на этапе заливки.

Железобетонные конструкции в процессе эксплуатации могут быть подвержены различным нагрузкам и воздействиям, компенсировать которые удается за счет выполнения деформационных швов.

Температурно-усадочные швы

В монолитных железобетонных плитах следует предусматривать их разрезку постоянными и временными температурно-усадочными швами, расстояния между которыми назначают в зависимости от климатических условий, конструктивных особенностей сооружения, последовательности производства работ и т.п. (см. п. 10.2.3 СП63.13330.2012 Бетонные и железобетонные конструкции.

Расстояние между температурно-усадочными швами следует принимать по таблице (см.таб.3 Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)

Наибольшие расстояния, м,

между температурно-усадочными швами, допускаемые

без расчета, для конструкций, находящихся

Если фундаменты не могут быть разделены на участки длиной менее 40 м, то необходимо предусматривать временные усадочные швы шириной от 0,7 до 1,2 м – рабочий шов бетонирования. В этих случаях из массива фундаментов с обеих сторон временного шва (в уровне подошвы и верхней поверхности фундамента) должна быть выпущена рабочая арматура, которую, спустя 3-4 недели после бетонирования фундаментов, необходимо соединить сваркой с накладными стержнями, а шов заполнить бетоном той же марки (см. п.6.17 Руководство по проектированию плитных фундаментов каркасныхзданий и сооружений башенного типа).

Рабочий шов бетонирования.dwg

Рабочий шов бетонирования.dwg

Поверхность рабочих швов, устраиваемых при укладке бетонной смеси с перерывами, должна быть перпендикулярна оси бетонируемых колонн и балок, поверхности плит и стен. Возобновление бетонирования допускается производить по достижении бетоном прочности не менее 1,5 МПа (см. п.5.3.12 СП70.13330.2012 Несущие и ограждающие конструкции).

Рабочим швом называют плоскость стыка между затвердевшим и новым (свежеуложенным) бетоном, образованнуюиз-заперерыва в бетонировании. Рабочий шов образуется в том случае, когда последующие слои бетонной смеси укладывают на полностью затвердевшие предыдущие слои. Обычно это происходит тогда, когда перерыв в бетонировании составляет5—7ч и более.

Величина сцепления нового бетона со старым значительно ниже, чем монолита. Поэтому рабочий шов отличается от монолитного бетона не только по прочности, но и по другим характеристикам: он менее морозостоек, водопроницаем и т. д. Для уменьшения отрицательного влияния рабочих швов на конструкцию необходимо: во-первых,размещать их в местах, наименее опасных для прочности конструкций, и так, чтобы они не ухудшали внешний вид сооружения;во-вторых,допускаются только конструктивно оформленные рабочие швы;в-третьих,такие швы перед укладкой свежего бетона нужно соответствующим образом обработать. Конструктивное оформление рабочих швов зависит от вида конструкций, их размеров и армирования. Для образования швов в плитах устанавливают доски, плоские щиты или щиты с уступом. Уступ делают для удлинения поперечной линии шва, что увеличивает его прочность и водонепроницаемость.

Перед укладкой свежего бетона с поверхности шва удаляют рыхлые слои бетона и цементную корку, очищают его от грязи и мусора. Если поверхность затвердевшего бетона шва гладкая, ее насекают зубилами, скарпелью или с помощью отбойного молотка с последующей промывкой и продувкой сжатым воздухом. Непосредственно перед укладкой нового бетона поверхность шва следует увлажнить, а также уложить слой жирного раствора на том же цементе, что и основной бетон. Все это способствует обеспечению высокой прочности и водонепроницаемости шва.

Холодный шов при бетонировании
Монолитный бетон и железобетон, как правило, экономичнее сборного в подземных частях зданий и сооружений, в фундаментах под технологическое оборудование, в конструкциях массивных стен, в дорожном и гидротехническом строительстве. Широкую сферу эффективного применения он находит также в сборно-монолитных конструкциях.
Монолитный бетон и железобетон, по сравнению со сборным способом строительства, обладает неоспоримыми преимуществами, обеспечивая в конструкциях эффективную диссипацию колебательной энергии при ветровых и сейсмических нагрузках, высокий момент сопротивления статическим и динамическим нагрузкам и низкую деформативность.
В СНиП 3.03.01-87 ”Несущие и ограждающие конструкции” при монолитном бетонировании предусматривается укладка бетонных смесей двумя принципиально различными способами:
-укладка без перерывов в бетонировании до начала схватывания предыдущего слоя бетона, то есть без образования рабочего шва;
-укладка с перерывами после схватывания уложенного ранее слоя бетона с образованием рабочего шва.
Непрерывное бетонирование предпочтительнее, так как этот способ обеспечивает наивысшее качество монолитных конструкций, однако по технологическим и организационным причинам это не всегда возможно, поэтому, как правило, проектом предусматриваются рабочие швы.
Рабочие швы также называют строительными швами, швами бетонирования или ”холодными швами”. Образование рабочих швов вызвано остановками бетонирования и определяется рядом причин:
-организационных: окончание рабочей смены, ремонт оборудования, нехватка материалов, несовершенную общую организацию работ, технические возможности используемых машин и механизмов;
-технологических: монтаж вышележащих арматуры, лесов и опалубки и ограничение нагрузок на конструкции;
-конструктивных: обеспечение направленных деформаций отдельных участков конструкций и сооружений в целом.
Как правило, возводимые монолитные бетонные и железобетонные конструкции бетонируются отдельными сопрягаемыми между собой участками – блоками (картами) бетонирования.
Рабочий шов бетона образуется, когда каждый последующий слой бетонной смеси укладывают на затвердевший (схватившийся) предыдущий слой бетона. Отличительной особенностью рабочего шва является то, что сцепление нового бетона с уже затвердевшим бетоном значительно ниже, чем прочность монолитного бетона без рабочего шва, вследствие чего снижаются морозостойкость, водонепроницаемость и ухудшается внешний вид конструкций. Это объясняется тем, что ”холодные швы” являются границей, на которой происходит превращение усадочных напряжений сжатия в напряжения растяжения, и поэтому зона шва становится предварительно напряженной. Как известно, бетон хорошо работает на сжатие, менее стоек к изгибающим нагрузкам и значительно хуже противостоит напряжениям растяжения. В результате релаксации напряжений растяжения, реализующихся в виде микротрещин, зона стыка имеет меньшую плотность и прочность, по сравнению с монолитным бетоном и при равных растягивающих напряжениях, трещины прежде всего открываются именно по швам.
В соответствии с СНиП 3.03.01-87 перед бетонированием поверхности рабочих швов должны быть очищены от грязи, масел, снега, льда и цементной пленки. Очистка поверхности рабочих швов от цементной пленки проводится для устранения возможности образования ”холодных швов”.
Годовой объем производства монолитного бетона и железобетона в России составляет 25-30 млн. м³. При допущении, что половина конструкций изготавливается способом послойной укладки с толщиной слоя ориентировочно 50 см за проход, общая площадь рабочих швов требующих подготовки поверхности составляет 12-15 млн. м²/год.
Цементная пленка
Основным источником образования цементной пленки является водный раствор гидроксида кальция Са(ОН)2, который выходит на поверхность бетона, реагирует с углекислотой воздуха СО2 и образует нерастворимую в воде пленку карбоната кальция СаСО3 (по химсоставу – известняком). Другим источником являются соли щелочных металлов, присутствующие в цементе в свободном виде; добавляемые в цемент цеолитовые туфы и зола-унос (зольные микросферы) тепловых электростанций, выделяющие щелочи; песок, щебень и гравий, содержащие галоидные соединения; ускорители твердения, противоморозные добавки, пластификаторы и другие добавки. При затворении цемента водой водорастворимые щелочи образуют растворы и химически связываются с силикатами и алюминатами цемента. Затем, при контакте с углекислотой воздуха щелочи карбонизируются с образованием нерастворимой в воде плотной цементной пленки.
Еще одним источником солей является вода затворения, если она по составу примесей не отвечает требованиям ГОСТ 23732.
Химически цементную пленку можно представить как смесь растворимых и нерастворимых в воде карбонатов, сульфатов, нитратов и хлоридов.
В поверхностном слое вытесненной из бетонной смеси воды, несмотря на полное превращение всего вяжущего в кристаллизующийся гидрат, не происходит образования плотной и прочной кристаллической структуры.
Физически цементная пленка, в отличие от тела цементного камня, представляет собой не прочную кристаллическую структуру, а рыхлую непрочную конденсационную структуру, заполняющую поровое пространство бетона на некоторую глубину.
При послойной укладке бетонной смеси на рабочий шов имеющий на поверхности цементную пленку, вместо ожидаемой по проекту монолитной, образуется трехслойная конструкция: ”бетон – цементная пленка – бетон”.
В этой конструкции с точки зрения прочности слабым местом является именно цементная пленка. Очевидно, что при пороговом напряжении, значение которого значительно ниже расчетного, разрушение бетонной конструкции произойдет именно по этой границе раздела. Из теории прочности известно, что для наиболее эффективного перераспределения напряжений и наиболее полной диссипации энергии при ветровых или сейсмических нагрузках конструкция должна обладать возможно полной монолитностью. В случае ”трехслойной” конструкции здание возможно рассматривать не как монолитную конструкцию, а как сборную, состоящую из ”этажей”, каждый из которых самостоятельно воспринимает механическую нагрузку и работает независимо от других.
Традиционные способы очистки рабочих швов
СНиП 3.03.01-87 определены способы очистки и установлены требования по прочности поверхности бетона при очистке от цементной пленки: механическая обработка металлической щеткой – не менее 1,5 МПа; механическое фрезерование – не менее 5 МПа; гидропескоструйная обработка – не менее 5 МПа; промывка водой и сушка сжатым воздухом – не менее 0,3 МПа. Рекомендации по величине допустимого временного интервала перекрытия слоев бетона до образования рабочего шва противоречивы и находятся в диапазоне 2-4,5 ч. Во всех случаях обязательной являтся очистка поверхности ранее уложенного бетона от пыли, грязи, масла и строительного мусора. Для предотвращения обезвоживания укладываемой смеси бетонное основание увлажняют. При перерыве в бетонировании качество верхнего (контактного) слоя бетона ухудшается во времени из-за водоотделения, наиболее интенсивно протекающего в первые 1-1,5 ч. И все же, прочность стыка при перерывах в бетонировании, составляющем до 5 и даже более часов, существенно выше, чем прочность стыка с полностью затвердевшим бетоном даже при тщательной подготовке его поверхности. При перерывах в работе дальнейшая укладка смеси может проводиться только после набора ранее уложенным бетоном прочности не менее 1,5 МПа, что гарантирует отсутствие нарушения его структуры. Рассмотрим достоинства и недостатки существующих способов очистки и подготовки поверхности рабочих швов:
1. Механическое фрезерование и механическая очистка поверхности бетона от цементной пленки производится металлическими щетками или метлами с проволочной щетиной. Сухая механическая очистка поверхности затвердевшего бетона возможна только после набора им определенной прочности, во избежании повреждения низлежащих слоев. Однако с набором бетоном прочности очистка поверхности рабочих швов затрудняется.
Применение приводных металлических щеток и машинного фрезерования оправдано только при наборе бетоном прочности не более 2-3 МПа. При большей прочности бетона эффективность обработки снижается из-за значительного увеличения продолжительности очистки и повышенного износа щеток. Достоинством механических способов очистки является применение их там, где невозможно использование пыльных и мокрых и дорогостоящих процессов пескоструйной и гидропескоструйной обработки. Очень эффектина насечка поверхности, увеличивающая площадь передачи напряжений. Однако, применение для снятия пленки и последующей насечки инструментов ударного действия (перфораторов, отбойных молотков) должно быть исключено, ввиду возможного повреждения верхнего слоя бетона стыкуемой поверхности. К недостаткам механических способов подготовки поверхности бетона можно отнести следующие:
-возможность очистки только после набора бетоном прочности 1,5 МПа приводит к длительным технологическим перерывам;
-удаляется только верхний слой цементной пленки и не открываются поры бетона;
-возможно возникновение и релаксация внутренних напряжений в виде микротрещин;
-пылеобразование требует очистки промышленным пылесосом;
-высокая стоимость оборудования и трудоемкость;
-сложность организации контроля качества работ.
2. При гидропескоструйной обработке удаляется цементная пленка и только в поверхностном слое открываются поры бетона. Процесс обладает следующими недостатками:
-отсутствие возможности проведения очистки до набора бетоном прочности 5 МПа и необходимость в длительных технологических перерывах для набора бетоном необходимой прочности;
-возникновение внутренних напряжений в результате ударного воздействия рабочей струи и их релаксация приводящая к микротрещинам;
-высокая стоимость компрессоров высокого и сверхвысокого давления, абразивоструйных комплексов и установок фильтрации и кондиционирования воздуха;
-ограничения в применении при внутренних работах и при действующем производстве.
3. Наиболее просто производить удаление цементной пленки с поверхности рабочего шва водяной или водовоздушной струей под давлением 0,5-0,7 МПа.
Достоинством этого способа является то, что очистку можно производить почти сразу же после укладки слоя при прочности бетона 0,3 МПа, то есть когда уже образовалась достаточно прочная структура бетона и нет опасности нарушения сцепления крупного заполнителя с растворной частью. При такой прочности по поверхности бетона можно ходить, хотя остаются следы от обуви и поверхность поддается продавливанию при нажиме пальцем с некоторым усилием. Время достижения этой прочности в зависимости от свойств бетонной смеси, влажности и температуры окружающего воздуха и находится в пределах от 4 до 18 ч.
К недостаткам очистки водяной или водовоздушной струей относятся:
-на практике невозможно применение этого способа очистки рабочих швов при отрицательных температурах окружающего воздуха и на вертикальных стыкуемых поверхностей, длительное время закрытых опалубкой;
-на поверхности остается нерастворимая в воде цементная пленка;
-содержащееся в сжатом воздухе компрессорное масло образует на поверхности антиадгезионную пленку.
4. Процесс химической очистки соляной кислотой является не эффективным и технически неоправданным.
В минералогии качественной реакцией на отличие кальцита (карбоната кальция) от других породообразующих минералов является бурное разложение в холодной соляной кислоте. Предложение по снятию цементной пленки, содержащей карбонаты, с помощью соляной кислоты не следует рекомендовать из-за опасности снижения долговечности бетона.
Именно этим объясняется мощный отрицательный эффект от ее применения:
-наблюдается поверхностное растворение и разрушение не только цементной пленки, но и цементного камня, что служит причиной разрушения шва между старым и новым бетоном в процессе эксплуатации;
-незначительно увеличивается прочность сцепления, по сравнению с необработанной поверхностью;
-требуется дополнительная операция нейтрализации кислоты щелочью (едким натром) с промывкой водой;
-потеря поверхностной прочности приводит к пылению бетона и требует дополнительного обязательного обеспыливания перед нанесением растворной смеси.
5. Для увеличения временного интервала между укладкой бетонной смеси и удалением цементной пленки и поверхностного слоя бетона, а также облегчения процесса очистки рабочего шва используют замедлители твердения, например, пластификатор бетонной смеси – сульфитно-дрожжевую бражку (СДБ). Раствор СДБ 15-20%-ной концентрации наносится на поверхность уложенного бетона краскораспылителем. Удаление ослабленного поверхностного слоя может проводиться как приводными щетками, так и под напором струи воды до полного отделения незатвердевшего слоя и удаления желтых пятен от СДБ.
К недостаткам этого способа можно отнести:
-обработку поверхности можно начинать не раньше, чем через сутки после укладки бетона; верхний предел времени обработки зависит от температуры воздуха и колеблется от двух до четырех суток;
-необходимо очень внимательно следить за тем, чтобы не снизить прочность основного бетона;
-применение замедлителей твердения недопустимо при проведении бетонирования не только в зимний, но даже в весенне-осенний период.

Температурный шов в железобетонных конструкциях

9.23 В конструкциях зданий и сооружений, испытывающих температурные и влажностные воздействия, следует предусматривать их разрезку температурно-усадочными швами, расстояния между которыми назначают в зависимости от температурных условий и конструктивных особенностей сооружения.

При неравномерной осадке фундаментов следует предусматривать разделение конструкций осадочными швами.

9.24 Расстояние между температурно-усадочными швами в бетонных и железобетонных конструкциях из обычного и жаростойкого бетонов следует устанавливать расчетом.

Расчет допускается не выполнять, если принятое расстояние между температурно-усадочными швами не превышает значений, указанных в таблице 9.2, в которой наибольшие расстояния между температурно-усадочными швами даны для бетонных и железобетонных конструкций с ненапрягаемой и с предварительно напряженной арматурой, при расчетной зимней температуре наружного воздуха минус 40ºС, относительной влажности воздуха 60% и выше и высоте колонн 3 м.

Читайте также:  Советы, как поклеить потолочную плитку

1. Для железобетонных конструкций (поз. 2), расчетная температура внутри которых не превышает 50ºС, расстояния между температурно-усадочными швами при расчетной зимней температуре наружного воздуха минус 30, 20, 10 и 1ºС увеличивают соответственно на 10, 20, 40 и 60% и при влажности наружного воздуха в наиболее жаркий месяц года ниже 40, 20 и 10% уменьшают соответственно на 20, 40 и 60 %.

Для железобетонных каркасных зданий (поз. 2, а, б, г) расстояния между температурно-усадочными швами увеличивают при высоте колонн 5 м – на 20 %, 7 м – на 60% и 9 м – на 100%. Высоту колонн определяют: для одноэтажных зданий – от верха фундамента до низа подкрановых балок, а при их отсутствии – до низа ферм или балок покрытия; для многоэтажных зданий – от верха фундамента до низа балок первого этажа.

3. Для железобетонных каркасных зданий (поз. 2, а, б, г) расстояния между температурно-усадочными швами определены при отсутствии связей либо при расположении связей в середине температурного блока. Расстояния между температурно-усадочными швами в сооружениях и тепловых агрегатах с расчетной температурой внутри объемов 70, 120, 300, 500 и 1000ºС уменьшают соответственно на 20, 40, 60, 70 и 90%.

9.25 Ширина температурно-усадочного шва b в зависимости от расстояния между швами l должна определяться по формуле

Относительное удлинение оси элемента εt следует вычислять в зависимости от вида конструкции и характера нагрева по указаниям 6.22-6.25.

Ширину температурно-усадочного шва, вычисленную по формуле (9.4), следует увеличить на 30%, если шов заполняется асбесто-вермикулитовым раствором, каолиновой ватой или шнуровым асбестом, смоченным в глиняном растворе (рисунок 9.4, а).

Температурно-усадочные швы в бетонных и железобетонных конструкциях следует принимать шириной не менее 20 мм.

Когда давление в рабочем пространстве теплового агрегата не равно атмосферному, температурно-усадочный шов должен иметь уширение для установки бетонного бруса. Брус должен устанавливаться насухо без раствора. Между брусом и менее нагретой поверхностью шов необходимо заполнить легко деформируемым теплоизоляционным материалом (рисунок 9.4, б).

В печах, где требуется герметичность рабочего пространства, с наружной поверхности в температурно-усадочном шве должен предусматриваться компенсатор (рисунок 9.4, в).

496 × 214 пикс. &nbsp Открыть в новом окне

а – шов, заполненный шнуровым асбестом; б – то же, с бетонным бруском; в – то же, с металлическим компенсатором; 1 – шнуровой асбест, смоченный в глиняном растворе; 2 – бетонный брусок; 3 – компенсатор; 4 – стальной стержень диаметром 6 мм.

9.26 Для организованного развития усадочных трещин в бетоне со стороны рабочего пространства теплового агрегата должны предусматриваться усадочные швы. Швы шириной 2-3 мм и глубиной, равной 1/10 высоты сечения, но не менее 20 мм, следует располагать через 60-90 см в двух взаимно перпендикулярных направлениях (рисунок 9.5, б).

устройством компенсационных швов в более нагретой сжатой зоне бетона (рисунок 9.5, а). Компенсационные швы шириной 2-5 мм следует располагать через 60-90 см на глубину не более 0,5 высоты сечения элемента в направлении, перпендикулярном к действию сжимающих усилий от воздействия температуры;

повышением температуры растянутой арматуры, расположенной у менее нагретой грани бетона, посредством увеличения толщины защитного слоя бетона или устройством наружной теплоизоляции.

378 × 235 пикс. &nbsp Открыть в новом окне

а- компенсационные; б – усадочные; 1 – компенсационный шов шириной 2-÷5 мм; 2 – усадочный шов глубиной 0,1hf и шириной 2-3 мм

Отдельные конструктивные требования

9.28 В железобетонных конструкциях из жаростойкого бетона для восприятия растягивающих усилий, как правило, следует устанавливать арматуру у менее нагретой грани сечения элемента.

Если в конструкциях от нагрузки растягивающие усилия возникают со стороны более нагретой грани сечения элемента, то арматура может воспринимать растягивающие усилия при температуре, не превышающей предельно допустимую температуру применения арматуры, устанавливаемой по расчету (см. таблицу 5.11).

Для снижения температуры арматуры допускается увеличивать толщину защитного слоя бетона у более нагретой грани сечения элемента до шести диаметров продольной арматуры или предусматривать теплоизоляцию из легкого жаростойкого бетона.

На границе бетонов разных видов следует устанавливать конструктивную арматуру из жаростойкой стали диаметром не более 4 мм, которая должна быть приварена к хомутам (рисунок 9.6).

Температура нагрева конструктивной арматуры не должна превышать предельно допустимую температуру применения конструктивной арматуры, указанную в таблице 5.10.

634 × 173 пикс. &nbsp Открыть в новом окне

1 – тяжелый жаростойкий бетон; 2 – теплоизоляционный слой из легкого жаростойкого бетона; 3 – сетка из жаростойкой стали диаметром 4 мм; 4 – продольная рабочая арматура

Рисунок 9.6 – Конструкция изгибаемого железобетонного элемента, нагреваемого до температуры более 400°С со стороны растянутой зоны

9.29 Несущие и ненесущие конструкции тепловых агрегатов следует выполнять из сборных однослойных или многослойных элементов. Сборные ограждающие конструкции, как правило, выполняются из блоков, плит и панелей.

В двухслойных панелях, проектируемых из разных видов жаростойкого бетона, теплоизоляционный легкий жаростойкий бетон может предусматриваться как со стороны рабочего пространства, так и с наружной стороны теплового агрегата.

Для улучшения совместной работы отдельных слоев бетона необходимо предусматривать установку конструктивной арматуры или анкеров. Конструктивная арматура должна заходить в каждый слой бетона на глубину не менее 50 мм. Если в зоне сопряжения отдельных слоев бетона температура превышает предельно допустимую температуру применения конструктивной арматуры, указанную в таблице 5.10, то для усиления связи между слоями допускается устраивать выступы или бетонные шпонки.

В ребристых панелях плиту и ребра следует выполнять из тяжелого или легкого конструкционного жаростойкого бетона (см. рисунок 9.5, б). В местах сопряжения ребер с плитой необходимо устраивать вуты. Между ребрами с менее нагретой стороны следует располагать тепловую изоляцию из легкого жаростойкого бетона или из теплоизоляционных материалов. В ребрах панели следует предусматривать арматурные каркасы, которые должны быть заведены в бетон плиты не менее чем на 50 мм. При необходимости снижения темпе-ратуры рабочей арматуры, устанавливаемой в ребрах, ребра могут выступать за наружную поверхность тепловой изоляции. Плиту панели следует армировать конструктивной сварной сеткой из арматуры диаметром не более 4 мм с расстояниями между стержнями не менее 100 мм.

Температура нагрева сварной сетки не должна превышать предельно допустимую температуру применения конструктивной арматуры, указанную в таблице 5.10. Если температура нагрева плиты панели превышает предельно допустимую температуру применения конструктивной арматуры, допускается плиту не армировать.

Для ненесущих облегченных ограждающих конструкций тепловых агрегатов следует предусматривать легкие жаростойкие бетоны и эффективные теплоизоляционные материалы.

9.30 В двухслойных панелях на металлическом листе легкий жаростойкий бетон следует крепить анкерами, приваренными к листу (рисунок 9.7, а). Анкеры должны приниматься диаметром 6÷10 мм или полосы 3х20 мм. Длина анкера должна быть не менее половины толщины футеровки, а расстояние между ними – не более 250 мм. Металлический лист толщиной не менее 3 мм должен иметь отогнутые края или приваренные «на перо» по контуру уголки.

В панелях с окаймляющим каркасом прямоугольного или трапециевидного сечения ребра должны предусматриваться из тяжелого или легкого конструкционного жаростойкого бетона, а пространство между ребрами на всю толщину следует заполнять теплоизоляционным легким жаростойким бетоном. Ребра следует армировать плоскими каркасами, расположенными с менее нагретой стороны (рисунок 9.7, б).

В панелях с окаймляющим арматурным каркасом сварной каркас следует располагать по периметру панели у менее нагретой стороны (рисунок 9.7, в).

Крепление панелей к каркасу должно осуществляться на болтах или на сварке так, чтобы панели могли свободно перемещаться при нагреве.

В конструкциях тепловых агрегатов из монолитного железобетона со стороны рабочего пространства в углах сопряжения стен, а также стен с покрытием и перекрытием следует предусматривать вуты.

При температуре рабочего пространства теплового агрегата свыше 800ºС ограждающую конструкцию с целью увеличения ее термического сопротивления следует выполнять многослойной, с включением в ее состав слоев из эффективной теплоизоляции (рисунок 9.7, г).

Многослойная несущая или самонесущая конструкция со стороны рабочего пространства должна иметь футеровочную плиту из жаростойкого бетона, а с ненагреваемой стороны – несущее основание в виде железобетонной плиты или металлического листа с окаймляющими уголками, а между ними – слой теплоизоляции. Волокнистые огнеупорные материалы следует применять в температурных зонах сечения конструкции, где нельзя применять более дешевых и менее дефицитные материалы, например, плиты или маты из минеральной ваты.

474 × 558 пикс. &nbsp Открыть в новом окне

а – двухслойная панель на металлическом листе; б – панель с окаймляющим каркасом из тяжелого жаростойкого бетона; в – панель с окаймляющим арматурным каркасом; г – панель на

металлическом листе со стальными анкерами и эффективной теплоизоляцией; 1 – уголок жесткости панели; 2 – металлический лист; 3 – анкер; 4 – легкий жаростойкий бетон с D1100 и менее; 5 – легкий жаростойкий бетон с D1200 и более; 6 – окаймляющий каркас из тяжелого жаростойкого бетона; 7 – арматурный каркас; 8 – эффективная теплоизоляция; 9 – усадочный шов; 10 – шайба

Температурный шов

Температурный шов – это деформационный шов в бетонной конструкции или основании. Наружный температурный шов-разрез разделяет дом на расчетные секции, в целях защиты материала стен, фундаментов и т.д. от деформаций в результате изменений температур бетона. Температурные швы обычно выполняют комбинированно с усадочными и компенсирующими сдвиги отдельных участков постройки в результате подвижек грунтового основания (сезонные осадки-пучения грунтов, как известно, ни предсказуемыми, ни равномерными быть не могут). Другие комбинации деформационных швов, к которым относятся и температурные, делают в целях разгрузки монтажных стыков между отдельными сборными элементами дома. Стыки должны сопротивляться не только поперечным и продольным напряжениям, но самым опасным – скручивающим, поэтому узлы стыков разрабатывают с деформационными швами. Расположены деформационные швы монтажных стыков на участках примыканий: бетонный пол с колоннами, маршами лестниц, пандусами и бордюрными камнями. А также и на любых участках конструкции, где есть излом плоскости или «ступенька» – например, перепад высот стяжки или плиты.

Температурный шов 10433

Температурные швы являются компенсационными, относятся к условно-эластичным и не имеют никакого отношения к усадочным швам и рабочим (технологическим или холодным) швам бетонирования. Совмещение температурного и усадочного шва всегда индивидуально и выполняется различно для массивного монолита, плит и стяжек.

Температурный шов 10446

Чтобы не запутаться в обширной терминологии: для упрощения классификации швов нужно подразделять их по нагрузкам и воздействиям на конструкцию, которые эти швы должны компенсировать.

Температурный шов 10434

Температурно-усадочные швы

Температурно-усадочные швы – это совмещение деформационных швов различного назначения в один, когда это возможно. Все температурно-усадочные швы обязательно герметизируют.

Температурный шов 10432

Усадочный шов

Усадочный шов фрагментирует конструкцию (плиту), при этом разрез никогда не доводят до нижней грани плиты. Усадочные напряжения в бетоне велики, и если не разгрузить плиту, то бетон не просто растрескается, а может стать непригодным к дальнейшей эксплуатации (или потребуется сложный дорогостоящий ремонт, установка пакеров и инъекции) из-за ряда глубоких сквозных трещин в напряженных зонах. Усадочный разрез делают по расчету – на часть высоты плиты, тем самым ослабляя рабочее сечение. «Где тонко, там и рвется»: усадочная трещина пойдет предсказуемо в глубину реза и не выйдет на загерметизированную поверхность конструкции. Усадочные швы часто совмещают с другими швами, в этих случаях может не быть ни трещин, ни разломов. Усадочные швы – это компенсаторы деформаций в массивах ж/б конструкций. Благодаря усадочным швам происходит компенсация деформаций усадок. Например, когда бетонная стяжка схватывается, она в силу физических факторов не может твердеть и терять влагу совершенно равномерно. Стяжку режут на карты – квадраты расчетной площади (в самых простых случаях для армированных стяжек это карты 6*6 м, если размер стяжки меньше – шов не нужен), и предусмотренные разрезы исключают появление непредусмотренных трещин.

Температурный шов 10435

Усадка бетона

Усадка бетона, или изменение объема забетонированных конструкций, начинается сразу же после завершения укладки бетонной смеси, продолжается в течение схватывания и твердения бетона и не всегда заканчивается после набора прочности – до нескольких месяцев и даже дольше. Потеря в объеме в результате усадки обычно находится в пределах 1-1,5%, это незаметно на глаз, но тем не менее может привести к растрескиванию бетона, отслаиванию поверхностного слоя и резкому снижению долговечности постройки – если не приняты меры по компенсации усадочных деформаций. Особенно опасны усадки бетона для несущих конструкций фундаментов, стен, перекрытий и т.д. Нормы допускают процент усадки, равный 3% для тяжелого бетона, или 0,4 мм/метр линейной конструкции. Уменьшение объема массивных конструкций вследствие усадки обязательно следует учитывать при бетонировании.

Температурный шов 10439

Величина усадки бетона зависит от многих факторов:

  • От количества цемента – прямая зависимость;
  • От вида цемента: высокоактивный и глиноземистый цемент даст большую усадку по сравнению с портланцементом;
  • От водоцементного отношения – чем больше воды в бетонной смеси, тем сильнее будет усадка;
  • От вида заполнителя: чем пластичнее заполнитель, тем меньше усадка;
  • От удельного веса и крупности заполнителя: чем плотнее и крупнее заполнитель – тем меньше усадка. Бетон с пористым крупным заполнителем и песком мелкой фракции даст большую усадку.
  • От качества уплотнения бетонной смеси при заливке. Вибро-уплотнение дает плотную упаковку зерен мелкого и крупного заполнителя и минимизирует пустоты, вследствие этого и усадка бетона намного меньше. Укладка с некачественным уплотнением приводит к усадочным трещинам в конструкции.

Температурный шов 10440

Процесс усадки бетона делится на стадии:

Первая усадка – пластическая, начинается уже при заливке смеси в опалубку и продолжается, пока вода испаряется из растворной смеси. Если не принять мер ухода за бетоном, не увлажнять и не защищать поверхности конструкций от солнца, ветра и излишнего тепла, то можно получить критическую усадку уже через 6-12 часов – до 4-5 мм/м, что приведет к образованию крупных поверхностных трещин. Что касается влаги, уходящей из жидкого бетона через неизолированную деревянную опалубку, из не укрытых грузовых и приемных емкостей, при слишком долгой перевозке смеси в жару и так далее – все эти нарушения технологии бетонирования приводят к снижению итоговой прочности конструкции, а в частности – к увеличению усадки. Компенсировать потерю воды можно пластификацией, но не превышая дозу реагента согласно инструкции. Разбавлять бетон водой для возвращения ему пластичности – значит увеличить усадку и снизить прочность. Пластическую усадку несложно уменьшить, но вторая стадия усадки необратима.

Температурный шов 10442

Вторая усадка – аутогенная, проходит в бетоне во время твердения и набора прочности. В защищенном бетоне величина этой усадки невелика – до 1-2 мм/м, но для массивного фундамента или стяжки — это достаточно серьезно. Чтобы предотвратить образование микротрещин, выполняют усадочные швы. Кроме того, бетонирование массивов в жару – это риск «запарить» бетон, поскольку при гидратации идет сильная экзотермия, что в итоге (если не охлаждать массив) даст внутренние напряжения в бетоне и трещины в конструкции. Снизить усадку можно и нужно, оптимизируя процесс укладки и ухода за бетоном. Оптимально – совмещать рабочие и усадочные швы.

Температурный шов 10441

Усадкой «при высыхании» современных бетонных конструкций обычно можно пренебречь. Но старое правило – заливать фундаменты и давать им выстояться около года – вовсе не архаизм, многие частные строители так и делают: заливают ленту или плиту весной, зимой бетону уже не грозят деформации и следующей ранней весной удобно начинать кирпичную кладку. Снижает усадку и армирование, и точный подбор состава бетона, и грамотное введение пластификаторов одновременно с уменьшением количества воды в бетоне.

Температурный шов 10438

Несколько «усадочных» нюансов:

  • Если в составе вяжущего много извести, то сильную поверхностную усадку может дать карбонизация.
  • Тяжелые бетоны дают меньшую усадку, чем легкие и пористые.
  • При зимнем бетонировании не обойтись без антиморозных добавок, и нельзя забывать, что они могут способствовать увеличению усадки. Бесконтрольно пластифицировать бетон тоже нельзя, любая присадка должна быть в нормативных пределах по технической характеристике.
  • Укладка смеси с тщательным вибрированием или штыкованием смеси значительно уменьшает усадку бетона. Уплотнять бетон можно любым способом: вибратором или садовой лопатой – главное эффективно выгнать воздух из смеси. Уплотнять заканчивают не раньше, чем прекратится появление воздушных пузырьков и на поверхности не появится цементное молочко.
  • Уход за бетоном: уложенный бетон должен быть влажным, оптимально 70-75% влажности, это снижает усадку.
  • Чем больше массив конструкции, тем больше значение усадки. На малых формах усадка незаметна и практически безвредна.
  • Усадка неармированных конструкций больше, чем усиленных армокаркасами.
  • Вовремя (при замесе) введенная пластификация снижает усадку, добавка пластификатора при форс-мажоре, например, чтобы реанимировать бетон на четвертом часу его жизни в миксере – увеличивает усадку и снижает прочность итогового бетона.
Читайте также:  Что такое обрыв нуля в трехфазной сети — причины и защита

Температурный шов 10443

Экстремальные условия работ, зимнее и летнее (в жару) бетонирование, пренебрежение технологией приготовления, укладки и уплотнения бетонной смеси приводят к увеличению усадки и снижению прочности бетона.

Температурный шов 10444

Конструкция температурного шва

Устройство и конструкция температурных швов имеют свои особенности, отличающие эти швы от деформационных швов других видов. Например, в здании температурный шов делит весь надземный объем, но «не трогает» фундаментную часть: в грунте сооружение защищено от резких температурных перепадов. В бетонных полах и стяжках температурный шов оптимально совмещать с усадочным, а если технология и процесс частной стройки на нужном уровне – то и с конструкционным (рабочим) швом бетонирования.

Температурный шов 10437

Расстояние между температурными швами

Шаг температурно-усадочных швов рассчитывают исходя из вида бетона, массивности и протяженности конструкций, климата и условий работы и еще многих факторов. Этот шаг может быть меньше 0,5 м в бетонной стяжке узкого коридора, и до десятков метров в сборной ж/б конструкции. Таблица 10.2.3 СП63.13330.2012 Бетонные и железобетонные конструкции, исключительно для примера:

Температурный шов 10436

Температурный шов в бетоне

Для того, чтоб компенсировать нагрузки от подвижек грунтового основания и постройки относительно отмостки, делают температурный шов. Например, разделение отмостки и ее гибкая привязка с фундаментом будут демпфировать нагрузки, и отмостка не будет подвергаться критическим деформациям и прослужит долго. Пример: классический температурно-усадочный шов в бетоне:

Для чего нужен и как правильно формируется деформационный шов

Объекты из железобетонных составляющих, монолитные дорожки и отмостки возводятся с использованием различных материалов и методик направленных на упрочнение конструкций. Рассмотрим, с какой целью устраивается деформационный шов. Ознакомимся с разновидностями технических зазоров, критериями их выбора, возможными вариантами их заполнения. Читайте до конца и Вы узнаете об основных особенностях формирования канавок в затвердевшем бетоне.

Техническое описание

Под деформационным швом подразумевается линия разреза монолитной конструкции. Необходима она для того, чтобы от перепадов температуры и влажности, изменения давления на архитектурные элементы здания не происходили разрушительные процессы. Например, во время усадки дома или от сейсмического движения грунта могут лопнуть стены, перекрытия, фундамент. Также нередко трещины наблюдаются на пешеходных дорожках и отмостке из бетона или асфальта.

Если рассматривать в комплексе строительные объекты, которые нуждаются в устройстве деформационных швов, то можно выделить несколько отдельных вариантов:

  • протяженные стены, перекрытия, дорожные полотна, мостовые;
  • природное основание в виде слабого грунта, сейсмически активные регионы;
  • климатические зоны, для которых характерны обильные осадки.

С одной стороны разрез элемента нарушает его целостность и конструкция становится не монолитной, а состоящей из отдельных блоков. С другой стороны наличие деформационных швов способствует повышению устойчивости дома. Это обосновано улучшением общего уровня сопротивления здания к переменчивым нагрузкам различного рода.

Разновидности

Строение и его составные части могут быть повреждены по причинам, которые имеют различную природу. На основании этого осуществляется классификация деформационных разрезов. Выделяются среди них следующие варианты:

  • температурный – компенсирует линейные смещения от перепадов температур, устраивается только на стенах;
  • осадочный – формируется в условиях высокой вероятности появления неравномерного давления на грунт со стороны строения (не симметричное здание по этажам, близкое расположение различного рода зданий);
  • антисейсмический – отдельные блоки с колебаниями почвы справляются лучше, чем цельная конструкция;
  • усадочный – монолитный дом и его части по мере затвердевания бетона уменьшается в размерах, что способствует образованию избыточного напряжения в теле конструкций (формируется только на этапе набора прочности раствора, после завершения процесса усадочный шов заполняется раствором);
  • изоляционный – устраивается такой деформационных разрез в бетонных полах, вдоль стен и колонн, вдоль фундамента под оборудование либо смежные конструкции с целью заглушения нагрузки на них динамического характера;
  • конструкционный – назначение здесь аналогично усадочному, только исключено рассмотрение вертикальных подвижек.

Первый тип формируются чаще других для различного рода объектов. Перепады температурных условий эксплуатации наблюдаются во многих климатических зонах, что объясняет их распространенность. Компенсирующие тепловое расширение деформационные швы устраиваются в стенах вдоль всего монолитного здания за исключением фундаментной части.

Физические параметры

Расположение и геометрия деформационных швов в железобетонных конструкциях рассматривается на этапе проектирования того или иного объекта. Планирование осуществляется с учетом действующего свода СНиП 2.03.03 от 1988 года. Здесь стоит обратить внимание на следующие рекомендации:

  • Температурный режим. Обязательно устройство деформационных швов в монолитных железобетонных конструкциях в условиях, когда присутствуют показания термометра ниже и выше нуля. Расположение разрезов: ось колонны, зазоры между плитами перекрытий, основание под стяжку (если есть). Ширина зависит от предельных линейных колебаний, которые определяются инженерными расчетами. В качестве заполнителя для технических пустот используется полимерный состав, который обладает хорошей пластичностью.

Примером послойно может выступать такое решение: пенопласт, два жгута из вспененного полиэтилена с полиуретановой смолой между ними слоем около 10 мм.

  • Стяжка. Деформационные швы в бетонных полах формируются на этапе заливки с использованием временных планок либо после высыхания раствора путем пропиливания. Допустимо выполнение работ спустя 48 часов после устройства стяжки. Глубина технического зазора должна превышать 30% высоты монолита. Канавки впоследствии заполняются герметизирующими пастами.
  • Промежутки. Расстояние между деформационными швами определяется на этапе инженерных вычислений с учетом природы основания, толщины монолитной конструкции, эксплуатационных условий. Разрезы формируются взаимно перпендикулярно. Зазоры между блоками в стяжке на железобетонной плите располагаются с шагом 8-12 метров.
  • Расположение. Деформационные швы в полах устраиваются вдоль линии водораздела, если соблюдается технический уклон.

Важно соблюдать все проектные данные, которые касаются мероприятий по компенсации различного рода нагрузок. Отклонения повышают вероятность образования трещин, которые не всегда получается обнаруживать своевременно под отделочными материалами. Нередко приходится формировать разные по типу разрезы на тех или иных архитектурных элементах объекта.

Выбор заполнителя

Тип заполняющего материала для деформационного шва в стяжке пола или стене определяется физическими параметрами зазора и назначением конкретной конструкции. Это могут быть временные и постоянные решения, с разной степенью эластичности. Рассмотрим детальнее востребованные варианты:

  • Герметик на основе силикона. Допустим в таких условиях: низкая механическая нагрузка, небольшая обслуживаемая площадь. Специалисты рекомендуют использовать однокомпонентные составы, так как они характеризуются лучшим качеством.
  • Профилированная лента. Изготавливается материал из полимерного сырья либо модифицированной резины. Закладка осуществляется на этапе заливки конструкций универсального типа.
  • Уплотнитель. Используется для заполнения деформационных швов в полу из цементного раствора в небольших по площади помещениях. Материал представлен эластичным жгутом или полосой из полиэтилена со вспененной структурой. Дополнительно зазоры подлежат герметизации силиконовой пастой.

Дорогостоящее, но наиболее практичное решение для работ с крупными площадками, геометрически сложными конструкциями, нагруженными полами – металлопрофиль. Монтаж проводится на этапе заливки раствора. Состоит двухсторонний профиль из металлической основы, пластиковых или резиновых вставок. Последние обеспечивают герметизацию зазора.

Технология работ с монолитом

Чаще деформационный шов в стяжке или стене формируется после полного застывания монолита или спустя 48 часов после заливки. Начинается процесс с разметки линий, по которым с помощью специального оборудования или болгарки с алмазным диском наносятся разрезы. Далее с помощью перфоратора и насадки в форме лопатки из широких зазоров устраняется лишний бетон.

Дно канавки должно быть ровным по глубине, без лишних камней и мусора. Если планируется установка металлического профиля, то дополнительно выполняется выравнивание заглубления полимербетоном с последующим шлифованием. Под герметизирующую пасту усадочные или другие швы в бетонных полах и стенах подлежат обязательной очистке от пыли и грунтованию. Однокомпонентный состав после нанесения через несколько минут приглаживается чистым увлажненным шпателем. Двухкомпонентный герметизирующий материал имеет жидкую консистенцию, поэтому он просто заливается в деформационную канавку. Сглаживание такой шпаклевки выполняется после застывания средства с использованием шлифовального диска.

Видео описание

В этом видео мастер рассказывает нужны ли деформационные швы температурного типа в облицовке коттеджа:

Коротко о главном

Деформационный шов устраивается в теле железобетонных конструкций для компенсации движений под воздействий различного рода нагрузок.

В зависимости от причин, которые могут спровоцировать появление трещин и разрушение монолита, различают несколько типов зазоров: осадочные, температурные, конструкционные, усадочный, изоляционный, антисейсмический.

Чаще всего устраивается температурный тип шва, так как он должен быть сформирован в условиях отрицательных и положительных показаниях термометра.

Глубина канавки составляет минимум 30% от общей высоты монолита.

В зависимости от назначения конструкции, эксплуатационных условий и размеров зазора в поперечном сечении используются различные заполнители: силиконовый герметик, полимерная или резиновая лента, эластичный жгут из вспененного полиэтилена либо металлический профиль.

Расположение, форма поперечного сечения и тип деформационного шва определяется на этапе проектирования с учетом всех факторов и инженерных расчетов.

Зачем и как делаются температурные швы в бетоне: обзор технологии, виды швов и пошаговая схема работы

Поскольку сегодня цена всех строительных материалов постоянно увеличивается, необходимо думать о том, как делать по-настоящему качественные конструкции, чтобы потом не приходилось постоянно исправлять дефекты.

Не являются исключением и всевозможные бетонные конструкции – например, полы и отмостки вокруг здания. Если полы сделать неправильно, то они просто потрескаются, а это автоматом повлечет за собой деформацию финишного напольного покрытия.

Фото, на котором видно температурные линии в структуре бетонного пола

Фото, на котором видно температурные линии в структуре бетонного пола

Что же касается отмостки, то она, по сути, отвечает за целостность и нормальное состояние фундаментной ленты. Если в отмостке появятся трещины, то туда будет проникать вода, которая в свою очередь попадет и в структуру фундамента. А это уже чревато серьезными последствиями.

Чтобы минимизировать риск образования трещин устраивается температурный шов в бетоне по СНИПу – с его наличием деформация маловероятна.

По сути, это своеобразные надрезы в структуре бетона, благодаря которым во время температурных перепадов бетон не трескается – так как ему как бы есть куда расширяться.

Правильно сделанная отмостка

Правильно сделанная отмостка

На самом деле существует целая классификация защитных линий – и там есть не только температурные. Рассмотрим, какие они вообще бывают, а потом на примере монтажа полов и отмостки разберемся с тем, как устраиваются температурные швы в железобетонных конструкциях.

Виды швов в бетоне

Подробный обзор опубликован в таблице ниже.

Тут все понятно из названия. Такие надрезы предохраняют здание от дефорамации во время усадки и от температурных колебаний. Осадочные линии располагаются на всех элементах здания и в фундаменте также. Температурные же делаются везде кроме фундамента.

Такая вот классификация.

Обратите внимание на то, что устройство температурных швов в бетоне подразумевает их обязательную обработку – это не пустоты. Как правило, такие надрезы заделываются либо герметиками, либо специальными профилями или эластичными вставками. Если этого не сделать, то существенно ухудшается визуальный вид и, конечно, теряются теплоизоляционные качества конструкции.

Заполнения деформационной линии специальным профилем

Заполнения деформационной линии специальным профилем

Теперь можно перейти к тому, как именно делается подобная температурная защита.

Монтаж температурных швов

Как уже упоминалось, мы будем знакомиться с технологией на примере устройства бетонных полов и отмостки по периметру здания. Почему именно эти конструкции? Потому что в большинстве случаев именно их делают своими руками и с характерными ошибками (см.также статью «Сетка для бетона – виды и применение»).

А ошибки как раз и заключаются в том, что отсутствует защитная температурная линия.

Стяжка без защитных надрезов

Стяжка без защитных надрезов

Прежде чем начать – пару слов об особенностях данных конструкций, в каких случаях их нужно защищать подобной технологией.

Температурную защиту здесь актуально делать в той ситуации, когда имеется большая площадь помещения. Это обычно встречается в производственных зданиях, в складских ангарах и т.п.

Обратите внимание на то, что устройство температурных швов в бетоне выполняется еще и в стенах. Причем даже в том случае, если они сделаны не из монолита, но и из обычных кирпичей или блоков.

Теперь можно приступать непосредственно к работе. Краткие инструкции по заливке пола и отмостки, в которых основное внимание будет уделено устройству швов.

Защита отмостки

Заливка отмостки

Этот элемент дома делается примерно так:

  1. По периметру здания делается траншея глубиной примерно 15 см. При этом ее ширина должна быть не меньшей, чем выступ козырьков на крыше.
  2. Траншея засыпается щебнем, сверху камня прокладываются полосы рубероида.
  3. Монтируется каркас из арматуры.

Совет: прутья арматуры нужно обязательно вставить в стены дома. Для этого выполняется такая работа, как алмазное бурение отверстий в бетоне, в которые и вставляются концы арматуры.

  1. Заливается слой бетона с уклоном от стен.

Температурный шов делается как раз перед тем, как заливается бетонная смесь. Делается он по линии соединения стен и отмостки. Для того чтобы такие швы организовать – нужно всего лишь вставить между плоскостью стен и отмосткой не очень толстые доски.

Кроме того швы делаются и поперек отмостки – тем же способом (с помощью досок поставленных на ребро). При этом расстояние между температурными швами в железобетоне такого типа должно быть примерно 1,5 – 2 метра.

Опалубка для отмостки с учетом температурной защиты

Опалубка для отмостки с учетом температурной защиты

Получается, что смесь зальет все пространство, кроме тех линий, где установлены доски. После того, как бетон застынет, доски снимаются, а щели заполняются либо герметиком, либо лентой из вспененного полиэтилена.

Здесь главное, проследить за тем, чтобы соединение между домом и отмосткой не получилось пустым – иначе в него будет проникать вода и соответственно толку от данной конструкции не будет никакого.

Перейдем теперь к устройству полов со швами.

Швы в бетонных полах

Порядок заливки бетонного пола рассматривать не будем, так как температурные швы на такой плоскости можно устроить уже после первичного застывания смеси.

Конечно, лучше это сделать до заливки, чтобы при высыхании бетона на поверхности не появились трещины, но, в принципе, это необязательно если делать защитные линии до того как бетон застыл на 100% . Как правило, полное застывание происходит за несколько недель – за это время можно успеть сделать швы, согласитесь.

Защитный надрез в бетоне

Защитный надрез в бетоне

Итак, как делаются швы в стяжке.

  1. Определяются линии, по которым будет выполняться резка железобетона алмазными кругами. Расстояние между ними высчитывается по очень простой формуле – 25 умножаем на толщину стяжки, например, это будет 10 см. Соответственно расстояние между параллельными линиями должно быть около 2,5 метров.
  2. Болгаркой прорезаются швы, глубина которых должна быть равна примерно 1/3 от общей толщины стяжки. Что же касается ширины линий, то оптимальная цифра – максимум несколько сантиметров.
  3. Из швов с помощью кистей и пылесоса удаляется вся грязь и пыль, а затем все пространство грунтуется.
  4. После того, как грунтовка высохла, все прорезанное пространство заполняется мастикой, герметиком или каким-нибудь эластичным материалом. Кроме того существуют еще специальные профили, которые предназначены для закладки в такие швы.

Что мы получили в итоге, так это то, что теперь в случае расширения бетонной массы, деформация будет происходить на краях стяжки, по тем линиям, где проходят швы. В этих местах крайние линии бетона максимум немного потрескаются, но зато основное финишное покрытие пола останется абсолютно целым и невредимым.

Швы крупным планом

Швы крупным планом

Что, конечно, сэкономит ваши деньги, так как не нужно будет тратиться на текущий ремонт.

Собственно на этом наш обзор данной технологии закончен, и теперь можно подвести итоги.

Вывод

Получается, что устраивать на улице и внутри помещения температурные швы в структуре бетона – это очень желательное мероприятие, в результате которого значительно продлевается общий срок службы всей конструкции в целом.

Выходит, что вложившись один раз в устройство таких деформационных швов в бетоне, вы еще и экономите на мелком текущем ремонте.

Мы с вами разобрались в том, какие бывают защитные деформационные швы и в том, как устраивается защита от воздействия разных температур. Надеемся, что инструкция пригодится вам на практике. Ну а если хотите узнать еще больше сведений по этой теме, то советуем просмотреть дополнительное видео в этой статье.

Ссылка на основную публикацию