Таблица паропроницаемости строительных материалов

Паропроницаемость стен и материалов

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Паропроницаемость - важнейшая характеристика материалов

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Выпадение росы на утеплителе - нарушение паропроницаемости слоев

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Утеплять стены нужно в соответствии с требованиями нормативов

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

Таблица паропроницаемости строительных материалов

Информацию по паропроницаемости я собрал, скомпоновав несколько источников. По сайтам гуляет одна и та же табличка с одними и теми же материалами, но я её расширил, добавил современные значения паропроницаемости с сайтов производителей строительных материалов. Также я сверил значения с данными из документа «Свод правил СП 50.13330.2012» (приложение Т), добавил те, которых не было. Так что на данный момент это наиболее полная таблица.

МатериалКоэффициент паропроницаемости,
мг/(м*ч*Па)
Железобетон0,03
Бетон0,03
Раствор цементно-песчаный (или штукатурка)0,09
Раствор цементно-песчано-известковый (или штукатурка)0,098
Раствор известково-песчаный с известью (или штукатурка)0,12
Керамзитобетон, плотность 1800 кг/м30,09
Керамзитобетон, плотность 1000 кг/м30,14
Керамзитобетон, плотность 800 кг/м30,19
Керамзитобетон, плотность 500 кг/м30,30
Кирпич глиняный, кладка0,11
Кирпич, силикатный, кладка0,11
Кирпич керамический пустотелый (1400 кг/м3 брутто)0,14
Кирпич керамический пустотелый (1000 кг/м3 брутто)0,17
Крупноформатный керамический блок (тёплая керамика)0,14
Пенобетон и газобетон, плотность 1000 кг/м30,11
Пенобетон и газобетон, плотность 800 кг/м30,14
Пенобетон и газобетон, плотность 600 кг/м30,17
Пенобетон и газобетон, плотность 400 кг/м30,23
Плиты фибролитовые и арболит, 500-450 кг/м30,11 (СП )
Плиты фибролитовые и арболит, 400 кг/м30,26 (СП )
Арболит, 800 кг/м30,11
Арболит, 600 кг/м30,18
Арболит, 300 кг/м30,30
Гранит, гнейс, базальт0,008
Мрамор0,008
Известняк, 2000 кг/м30,06
Известняк, 1800 кг/м30,075
Известняк, 1600 кг/м30,09
Известняк, 1400 кг/м30,11
Сосна, ель поперек волокон0,06
Сосна, ель вдоль волокон0,32
Дуб поперек волокон0,05
Дуб вдоль волокон0,30
Фанера клееная0,02
ДСП и ДВП, 1000-800 кг/м30,12
ДСП и ДВП, 600 кг/м30,13
ДСП и ДВП, 400 кг/м30,19
ДСП и ДВП, 200 кг/м30,24
Пакля0,49
Гипсокартон0,075
Плиты из гипса (гипсоплиты), 1350 кг/м30,098
Плиты из гипса (гипсоплиты), 1100 кг/м30,11
Минвата, каменная, 180 кг/м30,3
Минвата, каменная, 140-175 кг/м30,32
Минвата, каменная, 40-60 кг/м30,35
Минвата, каменная, 25-50 кг/м30,37
Минвата, стеклянная, 85-75 кг/м30,5
Минвата, стеклянная, 60-45 кг/м30,51
Минвата, стеклянная, 35-30 кг/м30,52
Минвата, стеклянная, 20 кг/м30,53
Минвата, стеклянная, 17-15 кг/м30,54
Пенополистирол экструдированный (ЭППС, XPS)0,005 (СП ); 0,013; 0,004 (. )
Пенополистирол (пенопласт), плита, плотность от 10 до 38 кг/м30,05 (СП )
Пенополистирол, плита0,023 (. )
Эковата целлюлозная0,30; 0,67
Пенополиуретан, плотность 80 кг/м30,05
Пенополиуретан, плотность 60 кг/м30,05
Пенополиуретан, плотность 40 кг/м30,05
Пенополиуретан, плотность 32 кг/м30,05
Керамзит (насыпной, т.е. гравий), 800 кг/м30,21
Керамзит (насыпной, т.е. гравий), 600 кг/м30,23
Керамзит (насыпной, т.е. гравий), 500 кг/м30,23
Керамзит (насыпной, т.е. гравий), 450 кг/м30,235
Керамзит (насыпной, т.е. гравий), 400 кг/м30,24
Керамзит (насыпной, т.е. гравий), 350 кг/м30,245
Керамзит (насыпной, т.е. гравий), 300 кг/м30,25
Керамзит (насыпной, т.е. гравий), 250 кг/м30,26
Керамзит (насыпной, т.е. гравий), 200 кг/м30,26; 0,27 (СП )
Песок0,17
Битум0,008
Полиуретановая мастика0,00023
Полимочевина0,00023
Вспененный синтетический каучук0,003
Рубероид, пергамин0 – 0,001
Полиэтилен0,00002
Асфальтобетон0,008
Линолеум (ПВХ, т.е. ненатуральный)0,002
Сталь
Алюминий
Медь
Стекло
Пеностекло блочное0 (редко 0,02)
Пеностекло насыпное, плотность 400 кг/м30,02
Пеностекло насыпное, плотность 200 кг/м30,03
Плитка (кафель) керамическая глазурованная≈ 0 (. )
Плитка клинкернаянизкая (. ); 0,018 (. )
Керамогранитнизкая (. )
ОСП (OSB-3, OSB-4)0,0033-0,0040 (. )

Узнать и указать в этой таблице паропроницаемость всех видов материалов трудно, производителями создано огромное количество разнообразных штукатурок, отделочных материалов. И, к сожалению, многие производители не указывают на своей продукции такую важную характеристику как паропроницаемость.

Например, определяя значение для теплой керамики (позиция «Крупноформатный керамический блок»), я изучил практически все сайты производителей этого вида кирпича, и только лишь у некоторых из них в характеристиках камня была указана паропроницаемость.

Также у разных производителей разные значения паропроницаемости. Например, у большинства пеностекольных блоков она нулевая, но у некоторых производителей стоит значение «0 – 0,02».

Смотрите также:

Александр (27.01.2016 10:56)
Ха, интересно, паропроницаемость у ГБ и облицовочной пустотелой керамики одинакова практически, да и раствор с натяжкой где то близко. Так зачем тогда делать вентзазор между кладками? Мидел и с вент и без оного, результат везде одинаков. Я так понимаю самая главная фишка- это дать газобетону просохнуть перед отделочными работами

Александр (27.01.2016 10:58)
steppe: Паропроницаемость у пластилина как у парафина – никакая!

Виталий (29.01.2016 20:17)
Какова паропроницаемость пароизоляционной пленки, например Изоспан Б, Мегаизол Б и т.п. Ее параметры близки к простому полиэтилену?

> этого достаточно для предотвращения попадания пара в утеплитель?
Да.

Паропроницаемость строительных материалов (таблица и понятие)

Паропроницаемость — это величина, численно равная количеству водяного пара в миллиграммах, проходящего за 1 ч через слой материала площадью 1 м 2 и толщиной 1 м при условии, что температура воздуха у противоположных сторон слоя одинаковая, а разность парциальных давлений водяного пара равна 1 Па (п.2.3 ГОСТ 25898-2012).

Сопротивление паропроницанию -это показатель, характеризующий разность парциальных давлений водяного пара в паскалях у противоположных сторон изделия с плоскопараллельными сторонами, при которой через изделие площадью 1 м 2 за 1 ч проходит 1 мг водяного пара при равенстве температуры воздуха у противоположных сторон изделия; величина, численно равная отношению толщины слоя испытуемого материала к значению паропроницаемости (п.2.4 ГОСТ 25898-2012).

Коэффициент паропроницаемости материала — это расчетный теплотехнический показатель, определяемый как отношение толщины образца материала d к сопротивлению паропроницанию Rп , измеренному при установившемся стационарном потоке водяного пара через этот образец (п.2.5 ГОСТ 25898-2012)..

Расчетные значения паропроницаемости и сопротивления паропроницанию строительных материалов и изделий приведены в таблице Т.1 приложения Т (справочного) и таблице М.1 приложения М (справочного) действующего и обязательного к применению СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 (согласно постановлению 985).

Таблица Т.1 Приложения Т СП 50.13330.2012

Расчетное значение паропроницаемости строительных материалов и изделий

МатериалПлотность в сухом состоянии,
г/м 3
Расчетная паропроницаемость µ,
мг/(м . ч . Па)
Теплоизоляционные материалы
1 Плиты из пенополистиролаДо 100,05
2 То же10 – 120,05
3 “12 – 140,05
4 “14-150,05
5 “15-170,05
6 “17-200,05
7 “20-250,05
8 “25-300,05
9 “30-350,05
10 “35-380,05
11 Плиты из пенополистирола с графитовыми добавками15-200,05
12 То же20-250,05
13 Экструдированный пенополистирол25-330,005
14 То же35-450,005
15 Пенополиуретан800,05
16 То же600,05
17 “400,05
18 Плиты из резольно-фенолформальдегидного пенопласта800,23
19 То же500,23
20 Перлитопластбетон2000,008
21 То же1000,008
22 Перлитофосфогелевые изделия3000,2
23 То же2000,23
24 Теплоизоляционные изделия из вспененного синтетического каучука60-950,003
25 Плиты минераловатные из каменного волокна1800,3
26 То же40-1750,31
27 “80-1250,32
28 “40-600,35
29 “25-500,37
30 Плиты из стеклянного штапельного волокна850,5
31 То же750,5
32 “600,51
33 “450,51
34 “350,52
35 “300,52
36 “200,53
37 “170,54
38 “150,55
39 Плиты древесно-волокнистые и древесно-стружечные10000,12
40 То же8000,12
41 “6000,13
42 “4000,19
43 Плиты древесно-волокнистые и древесно-стружечные2000,24
44 Плиты фибролитовые и арболит на портландцементе5000,11
45 То же4500,11
46 “4000,26
47 Плиты камышитовые3000,45
48 То же2000,49
49 Плиты торфяные теплоизоляционные3000,19
50 То же2000,49
51 Пакля1500,49
52 Плиты из гипса13500,098
53 То же11000,11
54 Листы гипсовые обшивочные (сухая штукатурка)10500,075
55 То же8000,075
56 Изделия из вспученного перлита на битумном связующем3000,04
57 То же2500,04
58 “2250,04
59 “2000,04
Засыпки
60 Гравий керамзитовый6000,23
61 То же5000,23
62 “4500,235
63 Гравий керамзитовый4000,24
64 То же3500,245
65 “3000,25
66 “2500,26
67 “2000,27
68 Гравий шунгизитовый (ГОСТ 32496)7000,21
69 То же6000,22
70 “5000,22
71 “4500,22
72 “4000,23
73 Щебень шлакопемзовый и аглопоритовый (ГОСТ 32496)8000,22
74 То же7000,23
75 “6000,24
76 “5000,25
77 “4500,255
78 “4000,26
79 Пористый гравий с остеклованной оболочкой из доменного и ферросплавного шлаков (ГОСТ 25820)7000,22
80 То же6000,235
81 “5000,24
82 “4000,245
83 Щебень и песок из перлита вспученного (ГОСТ 10832)5000,26
84 То же4000,3
85 “3500,3
86 “3000,34
87 Вермикулит вспученный (ГОСТ 12865)2000,23
88 То же1500,26
89 “1000,3
90 Песок для строительных работ (ГОСТ 8736)16000,17
Конструкционные и конструкционно-теплоизоляционные материалы
Бетоны на заполнителях из пористых горных пород
91 Туфобетон18000,09
92 То же16000,11
93 “14000,11
94 “12000,12
95 Бетон на литоидной пемзе16000,075
96 То же14000,083
97 “12000,098
98 “10000,11
99 “8000,12
100 Бетон на вулканическом шлаке16000,075
101 То же14000,083
102 “12000,09
103 “10000,098
104 “8000,11
Бетоны на искусственных пористых заполнителях
105 Керамзитобетон на керамзитовом песке18000,09
106 То же16000,09
107 “14000,098
108 “12000,11
109 “10000,14
110 “8000,19
111 “6000,26
112 “5000,3
113 Керамзитобетон на кварцевом песке с умеренной (до Vв=12%) поризацией)12000,075
114 То же10000,075
115 “8000,075
116 Керамзитобетон на перлитовом песке10000,15
117 То же8000,17
118 Керамзитобетон беспесчаный7000,145
119 То же6000,155
120 “5000,165
121 “4000,175
122 “3000,195
123 Шунгизитобетон14000,098
124 То же12000,11
125 “10000,14
126 Перлитобетон12000,15
127 То же10000,19
128 “8000,26
129 Перлитобетон6000,3
130 Бетон на шлакопемзовом щебне18000,075
131 То же16000,09
132 “14000,098
133 “12000,11
134 “10000,11
135 Бетон на остеклованном шлаковом гравии18000,08
136 То же16000,085
137 “14000,09
138 “12000,10
139 “10000,11
140 Мелкозернистые бетоны на гранулированных доменных и ферросплавных (силикомарганца и ферромарганца) шлаках18000,083
141 То же16000,09
142 “14000,098
143 “12000,11
144 Аглопоритобетон и бетоны на заполнителях из топливных шлаков18000,075
145 То же16000,083
146 “14000,09
147 “12000,11
148 “10000,14
149 Бетон на зольном обжиговом и безобжиговом гравии14000,09
150 То же12000,11
151 “10000,12
152 Вермикулитобетон800
153 То же6000,15
154 “4000,19
155 “3000,23
Бетоны особо легкие на пористых заполнителях и ячеистые
156 Полистиролбетон на портландцементе (ГОСТ 32929)6000,068
157 То же5000,075
158 “4000,085
159 “3500,09
160 “3000,10
161 “2500,11
162 “2000,12
163 “1500,135
164 Полистиролбетон модифицированный на шлакопортландцементе5000,075
165 То же4000,08
166 “3000,10
167 “2500,11
168 “2000,12
169 Газо- и пенобетон на цементном вяжущем10000,11
170 То же8000,14
171 “6000,17
172 “4000,23
173 Газо- и пенобетон на известняковом вяжущем10000,13
174 То же8000,16
175 “6000,18
176 “5000,235
177 Газо- и пенозолобетон на цементном вяжущем12000,085
178 То же10000,098
179 “8000,12
Кирпичная кладка из сплошного кирпича
180 Глиняного обыкновенного на цементно-песчаном растворе18000,11
181 Глиняного обыкновенного на цементно-шлаковом растворе17000,12
182 Глиняного обыкновенного на цементно-перлитовом растворе16000,15
183 Силикатного на цементно-песчаном растворе18000,11
184 Трепельного на цементно-песчаном растворе12000,19
185 То же10000,23
186 Шлакового на цементно-песчаном растворе15000,11
Кирпичная кладка из пустотного кирпича
187 Керамического пустотного плотностью 1400 кг/м3 (брутто) на цементно-песчаном растворе16000,14
188 Керамического пустотного плотностью 1300 кг/м3 (брутто) на цементно-песчаном растворе14000,16
189 Керамического пустотного плотностью 1000 кг/м3 (брутто) на цементно-песчаном растворе12000,17
190 Силикатного одиннадцатипустотного на цементно-песчаном растворе15000,13
191 Силикатного четырнадцатипустотного на цементно-песчаном растворе14000,14
Дерево и изделия из него
192 Сосна и ель поперек волокон5000,06
193 Сосна и ель вдоль волокон5000,32
194 Дуб поперек волокон7000,05
195 Дуб вдоль волокон7000,3
196 Фанера клееная6000,02
197 Картон облицовочный10000,06
198 Картон строительный многослойный6500,083
Конструкционные материалы
Бетоны
199 Железобетон25000,03
200 Бетон на гравии или щебне из природного камня24000,03
201 Раствор цементно-песчаный18000,09
202 Раствор сложный (песок, известь, цемент)17000,098
203 Раствор известково-песчаный16000,12
Облицовка природным камнем
204 Гранит, гнейс и базальт28000,008
205 Мрамор28000,008
206 Известняк20000,06
207 То же18000,075
208 “16000,09
209 “14000,11
210 Туф20000,075
211 То же18000,083
212 “16000,09
213 “14000,098
214 “12000,11
215 “10000,11
Материалы кровельные, гидроизоляционные, облицовочные и рулонные покрытия для полов
216 Листы асбестоцементные плоские18000,03
217 То же16000,03
218 Битумы нефтяные строительные и кровельные14000,008
219 То же12000,008
220 “10000,008
221 Асфальтобетон21000,008
222 Рубероид, пергамин, толь600
223 Пенополиэтилен260,001
224 То же300,001
225 Линолеум поливинилхлоридный на теплоизолирующей подоснове18000,002
226 То же16000,002
227 Линолеум поливинилхлоридный на тканевой основе18000,002
228 То же16000,002
229 “14000,002
Металлы и стекло
230 Сталь стержневая арматурная7850
231 Чугун7200
232 Алюминий2600
233 Медь8500
234 Стекло оконное2500
235 Плиты из пеностекла80-1000,006
236 То же101-1200,006
237 То же121- 1400,005
238 То же141- 1600,004
239 То же161- 2000,004

Примечание: характеристики материалов в сухом состоянии приведены при влажности материала w, %, равной нулю.

Таблица М.1 Приложения М СП 50.13330.2012

Сопротивление паропроницанию листовых материалов и тонких слоев пароизоляции

Таблица паропроницаемости строительных материалов

МАТЕРИАЛЫ И ИЗДЕЛИЯ СТРОИТЕЛЬНЫЕ

Методы определения паропроницаемости и сопротивления паропроницанию

Building materials and products. Methods for determination of water vapour permeability and steam-tightness

Дата введения 2014-01-01

Цели, основные принципы и основной порядок работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 “Межгосударственная система стандартизации. Основные положения” и ГОСТ 1.2-2009 “Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены”

Сведения о стандарте

1 РАЗРАБОТАН федеральным государственным бюджетным учреждением “Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук” (“НИИСФ РААСН”)

2 ВНЕСЕН Техническим комитетом ТК 465 “Строительство”

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (МНТКС) (приложение Е к протоколу от 18 декабря 2012 г. N 41)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа государственного управления строительством

Министерство строительства и регионального развития

Министерство регионального развития

Агентство по строительству и архитектуре при Правительстве

4 В настоящем стандарте учтены требования международного стандарта ISO 12572:2001* Hydrothermal performance of building materials and products – Determination of water vapour transmission properties (Тепловлажностные свойства строительных материалов и изделий. Определение характеристик паропроницаемости) в части условий проведения испытаний.

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. – Примечание изготовителя базы данных.

Перевод с английского языка (en).

Степень соответствия – неэквивалентная (NEQ)

5 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. N 2013-ст межгосударственный стандарт ГОСТ 25898-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе “Национальные стандарты”, а текст изменений и поправок – в ежемесячном информационном указателе “Национальные стандарты”. В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе “Национальные стандарты”. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт распространяется на строительные материалы и изделия, включая тонкослойные покрытия, листы и пленки, и устанавливает методы определения паропроницаемости строительных материалов и изделий и сопротивления паропроницанию тонкослойных покрытий, листовых и пленочных материалов.

Результаты испытаний применяют при теплотехнических расчетах, для производственного контроля качества строительных материалов и изделий и при разработке нормативных документов на материалы и изделия конкретных видов.

2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

2.1 плотность потока водяного пара: Масса потока водяного пара, проходящего через единицу площади рабочей поверхности образца за единицу времени.

Примечание – Рабочая поверхность образца – поверхность, через которую проходит поток водяного пара.

2.2 однородный материал: Материал, плотность которого одинаковая по всему объему.

2.3 паропроницаемость: Величина, численно равная количеству водяного пара в миллиграммах, проходящего за 1 ч через слой материала площадью 1 м и толщиной 1 м при условии, что температура воздуха у противоположных сторон слоя одинаковая, а разность парциальных давлений водяного пара равна 1 Па.

2.4 сопротивление паропроницанию: Показатель, характеризующий разность парциальных давлений водяного пара в паскалях у противоположных сторон изделия с плоскопараллельными сторонами, при которой через изделие площадью 1 м за 1 ч проходит 1 мг водяного пара при равенстве температуры воздуха у противоположных сторон изделия; величина, численно равная отношению толщины слоя испытуемого материала к значению паропроницаемости.

2.5 коэффициент паропроницаемости материала: Расчетный теплотехнический показатель, определяемый как отношение толщины образца материала к сопротивлению паропроницанию , измеренному при установившемся стационарном потоке водяного пара через этот образец.

2.6 сравнительный коэффициент паропроницаемости: Отношение значения коэффициента паропроницаемости воздуха к значению коэффициента паропроницаемости испытуемого материала.

Примечание – Сравнительный коэффициент паропроницаемости показывает, на сколько при одинаковой температуре сопротивление паропроницанию слоя материала больше сопротивления паропроницанию слоя неподвижного воздуха такой же толщины; определяют, как показано в приложении А.

2.7 толщина слоя неподвижного воздуха с сопротивлением паропроницанию, эквивалентным сопротивлению паропроницанию образца: Толщина слоя неподвижного воздуха с сопротивлением паропроницанию, равным сопротивлению паропроницанию образца толщиной .

3 Общие положения

3.1 Сущность методов определения сопротивления паропроницанию и паропроницаемости заключается в создании стационарного потока водяного пара через исследуемый образец и определении интенсивности этого потока.

В настоящем стандарте приведены методы “мокрой чашки” и “сухой чашки”. Метод “мокрой чашки” является основным. Метод “сухой чашки” является дополнительным при определении характеристик материалов и изделий, применяемых в сухом режиме эксплуатации.

3.2 Если изделия применяют в специальных условиях, то при проведении испытаний значения температуры и относительной влажности воздуха могут быть согласованы между изготовителем и потребителем.

По требованию потребителя определение паропроницаемости материалов и изделий или сопротивления паропроницанию тонкослойных покрытий, пленок и др. может быть проведено методом “сухой чашки”, при этом в сосуде под образцом должен находиться влагопоглотитель.

3.3 Сопротивление паропроницанию определяют для листовых и пленочных строительных материалов толщиной менее 10 мм, а также для тонкослойных покрытий (тонкие штукатурные слои систем наружного утепления; кровельные рулонные материалы; лакокрасочные, пароизоляционные покрытия и т.п.). Для остальных материалов определяют паропроницаемость.

3.4 При испытании для герметизации зон прилегания образцов к верхним кромкам испытательных сосудов применяют паронепроницаемые герметики, не изменяющие во время испытания своих физических и химических свойств и не вызывающие изменения физических и химических свойств материала испытуемого образца.

3.5 Обозначения и единицы измерения

Обозначения и единицы измерения основных параметров определения характеристик паропроницаемости, применяемые в настоящем стандарте, приведены в таблице 1.

Таблица паропроницаемости строительных материалов

Ну вот и дожили, flash – всё! Все калькуляторы на сайте с 12,01,2021 не работают.

Теплотехнический калькулятор

Расчёт энергоэффективности

Расчёт окон

Равновесная влажность

Преобразователь величин паропроницаемости

Расчёт железобетонных балок

Расчёт деревянных балок

Калькулятор двутавров

Расчёт деревянных стоек

Паропроницаемость

Паропроницаемость

Паропроницаемость – способность материала пропускать или задерживать пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении по обеим сторонам материала. Паропроницаемость характеризуется величиной коэффициента паропроницаемости или величиной коэффициента сопротивления проницаемости при воздействии водяного пара. Коэффициент паропроницаемости измеряется в мг/(м·ч·Па).

В воздухе всегда содержится какое-то количество водяного пара, причем в теплом всегда больше, чем в холодном. При температуре внутреннего воздуха 20 °С и относительной влажности 55% в воздухе содержится 8 г водяных паров на 1 кг сухого воздуха, которые создают парциальное давление 1238 Па. При температуре –10°С и относительной влажности 83% в воздухе содержится около 1 г пара на 1 кг сухого воздуха, создающего парциальное давление 216 Па. Из-за разницы парциальных давлений между внутренним и наружным воздухом через стену происходит постоянная диффузия водяных паров из теплого помещения наружу. В результате в реальных условиях эксплуатации материал в конструкциях находится в несколько увлажненном состоянии. Степень увлажнения материала зависит от температурно-влажностных условий снаружи и внутри ограждения. Изменение коэффициента теплопроводности материала в эксплуатируемых конструкциях учитывается коэффициентами теплопроводности λ(A) и λ(Б), которые зависят от зоны влажности местного климата и влажностного режима помещения.
В результате диффузии водяных паров в толще конструкции происходит движение влажного воздуха из внутренних помещений. Проходя через паропроницаемые конструкции ограждения, влага испаряется наружу. Но если у наружной поверхности стены расположен слой материала, не пропускающий или плохо пропускающий водяные пары, то влага начинает скапливаться у границы паронепроницаемого слоя, вызывая отсыревание конструкции. В результате теплозащита влажной конструкции резко понижается, и она начинает промерзать. в данном случае возникает необходимость установки пароизоляционного слоя с теплой стороны конструкции.

Вроде бы всё относительно просто, но про паропроницаемость зачастую вспоминают только в контексте “дышащести” стен. Однако, это краеугольный камень в выборе утеплителя! К нему нужно подходить очень и очень осторожно! Нередки случаи, когда домовладелец утепляет дом, исходя лишь из показателя теплосопротивления, например, деревянный дом пенопластом. В результате получает загнивающие стены, плесень по всем углам и винит в этом “неэкологичный” утеплитель. Что касается пенопласта, то из за своей малой паропроницаемости его нужно использовать с умом и очень хорошо подумать, подходит ли он вам. Именно по этому показателю зачастую ватные или любые другие пористые утеплители подходят лучше для утепления стен снаружи. Кроме того, с ватными утеплителями сложнее ошибиться. Однако, бетонные или кирпичные дома можно без опасений утеплять и пенопластом – в этом случае пенопласт “дышит” лучше, чем стена!

В таблице ниже приведены материалы из списка ТКП, показатель паропроницаемости – последний столбец μ.

Минвата набрала столько влаги, сколько смогла из за отсутствия вентзазора

паропроницаемость стены изнутри выше, чем снаружи

Как понять, что такое паропроницаемость, и зачем она нужна. Многие слышали, а некоторые и активно употребляют термин “дышашие стены” – так вот, “дышашими” такие стены называют потому, что они способны пропускать воздух и водяной пар через себя. Некоторые материалы (например, керамзит, дерево, все ватные утеплители) хорошо пропускают пар, а некоторые очень плохо (кирпич, пенопласты, бетон). Выдыхаемый человеком, выделяемый при приготовлении пищи или принятии ванной пар, если в доме нет вытяжки, создаёт повышенную влажность. Признаком этого является появление конденсата на окнах или на трубах с холодной водой. Считается, что если стена имеет высокую паропроницаемость, то в доме легко дышится. На самом же деле, это не совсем так!

В современном доме, даже если стены сделаны из «дышащего» материала, 96% пара удаляется из помещений через вытяжку и форточку, и только 4% через стены. Если на стены наклеены виниловые или флизиленовые обои, то стены влагу не пропускают. А если стены действительно «дышащие», то есть без обоев и прочей пароизоляции, в ветренную погоду из дома выдувает тепло. Чем выше паропроницаемость конструкционного материала (пенобетон, газобетон и прочие тёплые бетоны), тем больше он может набрать влаги, и как следствие, у него более низкая морозостойкость. Пар, выходя из дома через стену, в «точке росы» превращается в воду. Теплопроводность отсыревшего газоблока увеличивается многократно, то есть в доме будет, мягко говоря, очень холодно. Но самое страшное, что при падении ночью температуры, точка росы смещается внутрь стены, а конденсат, находящийся в стене замерзает. Вода при замерзании расширяется и частично разрушает структуру материала. Несколько сотен таких циклов приводят к полному разрушению материала. Поэтому паропроницаемость строительных материалов может сослужить вам плохую службу.

Про вред повышенной паропроницаемости в интернете гуляет с сайта на сайт вот такая статья . Приводить её содержание на своём сайте я не буду в силу некоторого несогласия с авторами, однако избранные моменты хочется озвучить. Так, например, известный производитель минерального утеплителя, компания Isover, на своём англоязычном сайте изложила “золотые правила утепления” ( What are the golden rules of insulation? ) из 4-х пунктов:

Эффективная изоляция. Используйте материалы с высоким термическим сопротивлением (низкой теплопроводностью). Самоочевидный пункт, не требующий особых комментариев.

Герметичность. Хорошая герметичность является необходимым условием для эффективной системы теплоизоляции! Негерметичная теплоизоляция, независимо от её коэффициента теплоизоляции, может увеличивать потребление энергии от 7 до 11% на отопление здания. Поэтому о герметичности здания следует задумываться ещё на стадии проектирования. А по окончании работ проверить здание на герметичность.

Контролируемая вентиляция. Именно на вентиляцию возлагается задача по удалению излишней влажности и пара. Вентиляция не должа и не может осуществляться за счёт нарушения герметичности ограждающих конструкций!

Качественный монтаж. Об этом пункте, я думаю, тоже нет нужды говорить.

Важно отметить, что компания Isover не выпускает какие-либо пенопластовые утеплители, они занимаются исключительно минераловатными утеплителями, т.е. продуктами, имеющими наиболее высокий показатель паропроницаемости! Это действительно заставляет задуматься: как же так, вроде бы паропроницаемость необходима для отвода влаги, а производители рекомендуют полную герметичность!

Дело тут в недопонимании этого термина. Паропроницаемость материалов не предназначена для отвода влаги из жилого помещения – паропроницаемость нужна для отвода влаги из утеплителя ! Дело в том, что любой пористый утеплитель не является по сути самим утеплителем, он лишь создаёт структуру, удерживающую истинный утеплитель – воздух – в замкнутом объёме и по возможности неподвижным. Если вдруг образуется такое неблагоприятное условие, что точка росы оказывается в паропроницаемом утеплителе, то в нём будет конденсироваться влага. Эта влага в утеплителе берётся не из помещения! Воздух сам всегда содержит в себе какое-то количество влаги, и именно эта естественная влага и представляет угрозу утеплителю. Вот для отвода этой влаги наружу и нужно, чтобы после утеплителя были слои с не меньшей паропроницаемостью.

Семья из четырёх человек за сутки в среднем выделяет пар, равный 12 литрам воды! Эта влага из воздуха внутренних помещений никоим образом не должа попадать в утеплитель! Куда девать эту влагу – это вообще не должно никоим образом волновать утеплитель – его задача лишь утеплять!

Пример 1

Давайте разберём вышесказанное на примере. Возьмём две стены каркасного дома одинаковой толщины и одинакового состава (изнутри к наружному слою), отличатся буду они только видом утеплителя:

Лист гипсокартона (10мм) – OSB-3 (12мм) – Утеплитель (150мм) – ОSB-3 (12мм) – вентзазор (30мм) – ветрозащита – фасад.

Утеплитель выберем с абсолютно одинаковой теплопроводностью – 0,043 Вт/(м•°С), основное, десятикратное отличие между ними только в паропроницаемости:

Коэф. теплопроводности в климатических условиях Б (худший показатель) λ(Б)= 0.043 Вт/(м•°С).

Плотность ρ= 12 кг/м³.

Коэффициент паропроницаемости μ= 0.035 мг/(м•ч•Па)

Коэф. теплопроводности в климатических условиях Б (худший показатель) λ(Б)= 0.043 Вт/(м•°С).

Плотность ρ= 35 кг/м³.

Коэффициент паропроницаемости μ= 0.3 мг/(м•ч•Па)

Конечно, условия расчёта я тоже использую абсолютно одинаковые: температура внутри +18°С, влажность 55%, температура снаружи -10°С, влажность 84%.

Расчёт я провел в теплотехническом калькуляторе , кликнув по фото, вы перейдёте прямо на страницу расчёта:

Эковата + пароизоляция

Как видно из расчёта, теплосопротивление обоих стен совершенно одинаково (R=3.89), и даже точка росы у них расположена почти одинаково в толще утеплителя, однако, из за высокой паропроницаемости в стене с эковатой будет конденсироваться влага, сильно увлажняя утеплитель. Как бы ни была хороша сухая эковата, сырая эковата тепло держит во много раз хуже. А если допустить, что температура на улице опустится до -25°С, то зона конденсации составит почти 2/3 утеплителя. Такая стена не удовлетворяет нормам по защите от переувлажнения! С пенополистиролом ситуация принципиально другая потому, что воздух в нём находится в замкнутых ячейках, ему просто неоткуда набрать достаточное количество влаги для выпадения росы.

Справедливости ради нужно сказать, что эковату без пароизоляционных плёнок не укладывают! И если добавить в “стеновой пирог” пароизоляционную плёнку между ОSB и эковатой с внутренней стороны помещения, то зона конденсации практически выйдет из утеплителя и конструкция полностью будет удовлетворять требованиям по увлажнению (см. картинку слева). Однако, устройство пароиозяции практически лишает смысла размышления о пользе для микроклимата помещения эффекта “дыхания стены”. Пароизоляционная мембрана имеет коэффициент паропроницаемости около 0,1 мг/(м·ч·Па), а порой пароизолируют полиэтиленовыми плёнками или утеплителями с фольгированной стороной – их коэффициент паропроницаемости стремится к нулю.

Но низкая паропроницаемость тоже далеко не всегда хороша! При утеплении достаточно хорошо паропроницаемых стен из газо- пенобетона экструдированным пенополистиролом без пароизоляции изнутри в доме непременно поселится плесень, стены будут влажными, а воздух будет совсем не свеж. И даже регулярное проветривание не сможет высушить такой дом! Давайте смоделируем ситуацию, противоположную прошлой!

Пример 2

Стена на этот раз будет состоять из следующих элементов:

Газобетон марки D500 (200мм) – Утеплитель (100мм) – вентзазор (30мм) – ветрозащита – фасад.

Утеплитель выберем точно такой же, и более того, стену сделаем с точно таким же теплосопротивлением (R=3.89).

Как видим, при совершенно равных теплотехнических характеристиках мы можем получить радикально противоположные результаты от утепления одними и теми же материалами. Нужно отметить, что во втором примере обе конструкции удовлетворяют нормам по защите от переувлажнения, не смотря на то, что зона конденсации попадает в газосиликат. Такой эффект связан с тем, что плоскость максимального увлажнения попадает в пенополистирол, а из за его низкой паропроницаемости в нём влага не конденсируется.

В вопросе паропроницаемости нужно разобраться досконально ещё до того, как вы решите, как и чем вы будете утеплять свой дом!

Слоёные стены

В современном доме требования к теплоизоляции стен столь высоки, что однородная стена уже не способна соответствовать им. Согласитесь, при требовании к теплосопротивлению R=3 делать однородную кирпичную стену толшиной 135 см не вариант! Современные стены – это многослойные конструкции, где есть слои, выполняющие роль теплоизоляции, конструктивные слои, слой наружной отделки, слой внутренней отделки, слои паро- гидро- ветро-изоляций. В связи с разнообразными характеристиками каждого слоя очень важно правильно их располагать! Основное правило в расположении слоёв конструкции стены таково:

Паропроницаемость внутреннего слоя должна быть ниже, чем наружного, для свободного выходы пара за стены дома. При таком решении «точка росы» перемещается к наружной стороне несущей стены и не разрушает стен здания. Для предотврощения выпадения конденсата внутри ограждающей конструкции сопротивление теплопередаче в стене должно уменьшаться, а сопротивление паропроницанию возрастать снаружи внутрь.

Таблица паропроницаемости материалов

Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

1

Источники пара внутри помещения

Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость

Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов – это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости

Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

2

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Разрушительные действия пара

Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие – не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Правила расположения пароизолирующих слоев

Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

3

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Знакомство с таблицей паропроницаемости материалов

При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Паропроницаемость строительных материалов (таблица и понятие)

– способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара на обеих сторонах материала при одинаковом атмосферном давлении. Паропроницаемость характеризуется коэффициентом паропроницаемости или сопротивлением паропроницаемости и нормируется СНиПом II-3-79 (1998) «Строительная теплотехника», а именно главой 6 «Сопротивление паропроницанию ограждающих конструкций»

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости представлена в СНиПе II-3-79 (1998) «Строительная теплотехника», приложении 3 «Теплотехнические показатели строительных материалов конструкций». Показатели паропроницаемости и теплопроводности наиболее распространенных материалов, используемых для строительства и утепления зданий представлены далее в таблице.

МатериалПлотность, кг/м3Теплопроводность, Вт/(м*С)Паропроницаемость, Мг/(м*ч*Па)
Алюминий
Асфальтобетон
Гипсокартон
ДСП, ОСП
Дуб вдоль волокон
Дуб поперек волокон
Железобетон
Картон облицовочный
Керамзит
Керамзит
Керамзитобетон
Керамзитобетон
Кирпич керамический пустотелый (брутто1000)
Кирпич керамический пустотелый (брутто1400)
Кирпич красный глиняный
Кирпич, силикатный
Линолеум
Минвата
Минвата
Пенобетон
Пенобетон
Пенопласт ПВХ
Пенополистирол
Пенополистирол
Пенополистирол
ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ
ПЕНОПОЛИУРЕТАН
ПЕНОПОЛИУРЕТАН
ПЕНОПОЛИУРЕТАН
ПЕНОПОЛИУРЕТАН
Пеностекло
Пеностекло
Песок
ПОЛИМОЧЕВИНА
ПОЛИУРЕТАНОВАЯ МАСТИКА
Полиэтилен
Рубероид, пергамин
Сосна, ель вдоль волокон
Сосна, ель поперек волокон
Фанера клееная

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости

— это полная сводная таблица с данными по паропроницаемости всех возможных материалов, используемых в строительстве. Само слово «паропроницаемость» означает способность слоев строительного материала либо пропускать, либо задерживать водяные пары из-за разных значений давления на обе стороны материала при одинаковом показателе атмосферного давления. Эта способность так же называется коэффициентом сопротивляемости и определяется специальными величинами.

Чем выше показатель паропроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость.

Таблица паропроницаемости

указывается на следующие показатели:

  1. Тепловая проводимость — это, своего рода, показатель энергетического переноса тепла от более нагретых частиц к менее нагретым частицам. Следовательно, устанавливается равновесие в температурных режимах. Если в квартире установлена высокая теплопроводность, то это является максимально комфортными условиями.
  2. Тепловая емкость. С помощью нее можно рассчитать количество подаваемого тепла и содержащегося тепла в помещении. Обязательно необходимо подводить его к вещественному объему. Благодаря этому можно зафиксировать температурное изменение.
  3. Тепловое усвоение — это ограждающее конструкционное выравнивание при температурных колебаниях. Иными словами, тепловое усвоение — это степень поглощения поверхностями стен влаги.
  4. Тепловая устойчивость — это способность оградить конструкции от резких колебаний тепловых потоков.

Полностью весь комфорт в помещении будет зависеть от этих тепловых условий, именно поэтому при строительстве так необходима таблица паропроницаемости

, так как она помогает эффективно сравнить разнообразные типы паропроницаемости.

С одной стороны, паропроницаемость хорошо влияет на микроклимат, а с другой — разрушает материалы, из которых построен дома. В таких случаях рекомендуется устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Пароизоляция — это материалы, которые применяют от негативного воздействия воздушных паров с целью защиты утеплителя.

Существует три класса пароизоляции. Они различаются по механической прочности и сопротивлению паропроницаемости. Первый класс пароизоляции — это жесткие материалы, в основе которых фольга. Ко второму классу относятся материалы на основе полипропилена или полиэтилена. И третий класс составляют мягкие материалы.

Разновидности

На основе технической характеристики и сферы применения, материал бывает:

  • обычным;
  • огнеустойчивым;
  • влаго-огнеустойчивым;
  • влагоустойчивым.

Тип и вид ГКЛ влияют на их стоимость. ГВ покрашен в зеленый, на нем есть синие надписи. Низкое впитывание влаги обеспечивается присадками, находящимися в минерале, и пропиткой материала бактерицидным антисептиком.

У ГКЛВ ширина – 120 см, толщина – 9,5 или 12,5 мм. По длине листы бывают 2, 2,5 или 3 метра.

Обратите внимание! Влаго-огнестойкий гипсокартон так же зеленый, но все надписи на нем красные.

Механизм паропроницаемости

При условиях незначительной относительной влажности частички влаги, которые содержатся в атмосфере, проникают сквозь поры строительных материалов, оказываясь там в виде молекул пара. В момент увеличения уровня относительной влажности поры слоев накапливают воду, что становится причиной намокания и капиллярного подсоса.

Показатели паропроницаемости неувлажненных материалов применимы в условиях внутренних конструкций построек, которые имеют отопление. А вот уровни паропроницаемости увлажненных материалов применимы для любых конструкций построек, которые не отапливаются.

Уровни паропроницаемости, которые являются частью наших норм, не во всех случаях эквивалентны показателям, которые принадлежат к международным стандартам. Так, в отечественных СНиП уровень мю керамзито- и шлакобетона почти не отличается, тогда как по международным стандартам данные отличаются между собой в 5 раз. Уровни паропроницаемости ГКЛ и шлакобетона в отечественных нормах практически одинаковы, а в международных стандартах данные отличаются в 3 раза.

Существуют различные способы определения уровня паропроницаемости, что касается мембран, то можно выделить следующие способы:

  1. Американский тест с установленной вертикально чашей.
  2. Американский тест с перевернутой чашей.
  3. Японский тест с вертикальной чашей.
  4. Японский тест с перевернутой чашей и влагопоглотителем.
  5. Американский тест с вертикальной чашей.

В японском тесте используется сухой влагопоглотитель, который расположен под тестируемым материалом. Во всех тестах используется уплотнительный элемент.

Паропроницаемость материалов таблица – это строительная норма отечественных и, конечно же, международных стандартов. Вообще, паропроницаемость – это определенная способность матерчатых слоев активно пропускать водяные пары за счет разных результатов давления при однородном атмосферном показателе с двух сторон элемента.

Рассматриваемая способность пропускать, а также задерживать водяные пары характеризуется специальными величинами, носящими название коэффициент сопротивляемости и паропроницаемости.

В момент лучше акцентировать собственное внимание на международные установленные стандарты ISO. Именно они определяют качественную паропроницаемость сухих и влажных элементов

Большое количество людей являются приверженцами того, что дышащие – это хороший признак. Однако это не так. Дышащие элементы – это те сооружения, которые пропускают как воздух, так и пары. Повышенной паропроницаемостью обладают керамзиты, пенобетоны и деревья. В некоторых случаях кирпичи тоже имеют данные показатели.

Если стена наделена высокой паропроницаемостью, то это не значит, что дышать становится легко. В помещении набирается большое количество влаги, соответственно, появляется низкая стойкость к морозам. Выходя через стены, пары превращаются в обычную воду.

Большинство производителей при расчетах рассматриваемого показателя не учитывают важные факторы, то есть хитрят. По их словам, каждый материал тщательно просушен. Отсыревшие увеличивают тепловую проводимость в пять раз, следовательно, в квартире или ином помещении будет достаточно холодно.

Чем отличается влагостойкий гипсокартон от обычного?

Оба варианта находят широкое применение при обшивке различных конструкций и для создания сложных архитектурных форм, но между ними существует заметная разница:

  1. Область укладки. Простой вид продукции монтируется исключительно в сухих помещениях, имеющих постоянное отопление, влагостойкий тип можно использовать в комнатах, где влажность превышает 60–65%. К таким объектам относятся не только помещения, но и отдельные участки, испытывающие воздействие воды.
  2. Состав. Основной компонент обоих вариантов – гипс, но структура ГКЛВ имеет отличия: при изготовлении в смесь добавляются специальные модификаторы, которые снижают впитывание влаги, и антисептические вещества, повышающие устойчивость к плесени и грибку.
  3. Внешний слой. Обычный материал не имеет защитной обработки, а влагоустойчивая поверхность хорошо переносит непродолжительный контакт с жидкостью, не подвергаясь деформации.
  4. Вес. Наличие дополнительных компонентов утяжеляет деталь стандартного размера на 1,5–2 кг.
  5. Цвет. Специальная разновидность имеет зеленый или салатовый оттенок, поэтому продукцию можно легко отличить от невлагостойкой (серый цвет).

Фирменный влагостойкий лист гипсокартона легко узнать по зеленоватой расцветке картонной рубашки и синей маркировке

Влагостойкость значительно улучшает свойства продукции, повышает надежность и долговечность при использовании в сложных условиях.

Внимание! Ошибочно относить изделия к водостойким и подходящим для неотапливаемых объектов: структура плиты устойчива к воздействию, но в результате длительного прямого контакта с жидкостью постепенно деформируется.

Устойчивость к влаге не означает возможность многократного замораживания материала, поэтому при использовании ГКЛВ в неотапливаемых помещениях часто возникает коробление и расслоение облицовки

Создание комфортных условий

Для создания в жилище благоприятного микроклимата требуется принимать во внимание особенности используемого строительного сырья. Особый акцент следует сделать на паропроницаемости

Обладая знаниями об этой способности материала, можно корректно подобрать необходимое для строительства жилья сырье. Данные берутся из строительных норм и правил, например:

  • паропроницаемость бетона: 0,03 мг/(м*ч*Па);
  • паропроницаемость ДВП, ДСП: 0,12-0,24 мг/(м*ч*Па);
  • паропроницаемость фанеры: 0,02 мг/(м*ч*Па);
  • керамического кирпича: 0,14-0,17 мг/(м*ч*Па);
  • кирпича силикатного: 0,11 мг/(м*ч*Па);
  • рубероида: 0-0,001 мг/(м*ч*Па).

Образование пара в жилом доме может быть вызвано дыханием человека и животных, приготовлением еды, перепадом температур в ванной комнате и прочими факторами. Отсутствие вытяжной вентиляции также создаёт высокую степень влажности в помещении. В зимний период нередко можно замечать возникновение конденсата на окнах и на холодном трубопроводе. Это наглядный пример появления пара в жилых домах.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Особенности монтажа ГКЛВ

Влагостойкий гипсокартон монтируют двумя методами: на каркас или клеевой раствор. Первый способ подразумевает сооружение на черновой поверхности обрешетки из металлических профилей.

Не рекомендуется монтировать каркас из древесины. Этот материал отлично поглощает влагу, и обрешетка со временем начнет деформироваться.

Использование клеевого раствора также имеет определенные ограничения. Не стоит применять составы на водной основе. Кроме этого, черновая поверхность для монтажа листов гипсокартона должна быть ровной и очищенной.

Определить уровень проницаемости оборудования

Профессиональные строители имеют специальное оборудование для точного определения паропроницаемости определенных строительных материалов. Для расчета описанного параметра используется следующее оборудование:

  • весы с минимальной погрешностью;
  • посуда, необходимая для проведения экспериментов;

инструменты для точного определения толщины строительных материалов.Благодаря таким инструментам описанный атрибут точно определен. Но данные по экспериментальным результатам приведены в таблицах, поэтому нет необходимости определять паропроницаемость материала при строительстве объекта строительства.

Читайте также:  Ступени из мраморной крошки своими руками. Как сделать из бетона мрамор: технология. Искусственный мрамор из бетона
Ссылка на основную публикацию